精英家教网 > 初中数学 > 题目详情
如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为(  )
A.aB.C.D.
C.

试题分析:首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为a,进而求出△ACD的面积.
∵∠DAC=∠B,∠C=∠C,
∴△ACD∽△BCA,
∵AB=4,AD=2,
∴△ACD的面积:△ABC的面积为1:4,
∴△ACD的面积:△ABD的面积=1:3,
∵△ABD的面积为a,
∴△ACD的面积为a,
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B?A,B?C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.

(1)若a=4厘米,t=1秒,则PM= _________ 厘米;
(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

如图D,E分别是△ABC的AB,AC边上的点,且DE∥BC,AD∶AB=1∶4,

(1)证明:△ADE∽△ABC;
(2)当DE=2,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角顶点P在AD上滑动时(点P与A、D不重合),一直角边始终经过点C,另一直角边与AB交于点E.

(1)证明△DPC∽△AEP;
(2)当∠CPD=30°时,求AE的长;
(3)是否存在这样的点P,使△DPC的周长等于△AEP周长的倍?若存在,求出DP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.

(1)当点P在线段AB上时,求证:△APQ∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:正方形ABCD的边长为1,射线AE与射线BC交于点E,射线AF与射线CD交于点F,∠EAF=45°.
(1)如图1,当点E在线段BC上时,试猜想线段EF、BE、DF有怎样的数量关系?并证明你的猜想.

(2)设BE=x,DF=y,当点E在线段BC上运动时(不包括点B、C),如图1,求y关于x的函数解析式,并指出x的取值范围.
(3)当点E在射线BC上运动时(不含端点B),点F在射线CD上运动.试判断以E为圆心以BE为半径的⊙E和以F为圆心以FD为半径的⊙F之间的位置关系.
(4)当点E在BC延长线上时,设AE与CD交于点G,如图2.问⊿EGF与⊿EFA能否相似,若能相似,求出BE的值,若不可能相似,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在面积为24的菱形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH =DC.则图中阴影部分面积为      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为    

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知的两条直角边之比为,△∽△,若△的最短边长,则△最长边的中线长为    

查看答案和解析>>

同步练习册答案