精英家教网 > 初中数学 > 题目详情
(2007•宜昌)如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,△PQR与△BOC相似.

【答案】分析:(1)四边形ABCE是菱形.由平移得到四边形ABCE是平行四边形,又AB=BC,可以推出四边形ABCE是菱形;
(2)①四边形PQED的面积不发生变化.根据菱形的性质和已知条件可以求出菱形的面积,过A作AH⊥BD于H,再根据三角形的面积公式可以求出AH,由菱形的对称性知△PBO≌△QEO,所以BP=QE,现在可以得到S四边形PQED=S△BED,而S△BED的面积可以求出,所以四边形PQED的面积不发生变化.
②如图2,当点P在BC上运动,使△PQR与△COB相似时,∵∠2是△OBP的外角,∴∠2>∠3,∴∠2不与∠3对应,∴∠2与∠1对应,即∠2=∠1,∴OP=OC=3,过O作OG⊥BC于G,则G为PC的中点,△OGC∽△BOC,根据相似三角形的对应线段成比例可以求出CG,而PB=BC-PC=BC-2CG,根据这个等式就可以求出BP的长.
解答:解:(1)四边形ABCE是菱形.(1分)
∵△ECD是由△ABC沿BC平移得到的,
∴EC∥AB,且EC=AB,
∴四边形ABCE是平行四边形,(3分)
又∵AB=BC,
∴四边形ABCE是菱形;(4分)

(2)①四边形PQED的面积不发生变化.(5分)
方法一:∵ABCE是菱形,
∴AC⊥BE,OC=AC=3,
∵BC=5,
∴BO=4,
过A作AH⊥BD于H,(如图1).
∵S△ABC=BC×AH=AC×BO,
即:×5×AH=×6×4,
∴AH=.(6分)
或∵∠AHC=∠BOC=90°,∠BCA公用,
∴△AHC∽△BOC,
∴AH:BO=AC:BC,
即:AH:4=6:5,
∴AH=.6分)
由菱形的对称性知,△PBO≌△QEO,
∴BP=QE,
∴S四边形PQED=(QE+PD)×QR=(BP+PD)×AH=BD×AH
=×10×=24.(8分)
方法二:由菱形的对称性知,△PBO≌△QEO,
∴S△PBO=S△QEO,(6分)
∵△ECD是由△ABC平移得到的,
∴ED∥AC,ED=AC=6,
又∵BE⊥AC,
∴BE⊥ED,(7分)
∴S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED=S△BED
=×BE×ED=×8×6=24.(8分)

②方法一:如图2,当点P在BC上运动,使△PQR与△COB相似时,
∵∠2是△OBP的外角,
∴∠2>∠3,
∴∠2不与∠3对应,
∴∠2与∠1对应,
即∠2=∠1,
∴OP=OC=3(9分)
过O作OG⊥BC于G,则G为PC的中点,
∴△OGC∽△BOC,(10分)
∴CG:CO=CO:BC,
即:CG:3=3:5,
∴CG=,(11分)
∴PB=BC-PC=BC-2CG=5-2×=.(12分)

方法二:如图3,当点P在BC上运动,使△PQR与△COB相似时,
∵∠2是△OBP的外角,
∴∠2>∠3,
∴∠2不与∠3对应,
∴∠2与∠1对应,(9分)
∴QR:BO=PR:OC,即::4=PR:3,
∴PR=,(10分)
过E作EF⊥BD于F,设PB=x,则RF=QE=PB=x,
DF==,(11分)
∴BD=PB+PR+RF+DF=x++x+=10,x=.(12分)

方法三:如图4,若点P在BC上运动,使点R与C重合,
由菱形的对称性知,O为PQ的中点,
∴CO是Rt△PCQ斜边上的中线,
∴CO=PO,(9分)
∴∠OPC=∠OCP,
此时,Rt△PQR∽Rt△CBO,(10分)
∴PR:CO=PQ:BC,
即PR:3=6:5,
∴PR=(11分)
∴PB=BC-PR=5-=.(12分)
点评:此题主要考查了图形变换,把图形的变换放在平行四边形,菱形的背景之中,利用特殊四边形的性质探究图形变换的规律.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2007•宜昌)如图1,点A是直线y=kx(k>0,且k为常数)上一动点,以A为顶点的抛物线y=(x-h)2+m交直线y=kx于另一点E,交y轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C.(点A,E,F两两不重合)
(1)请写出h与m之间的关系;(用含的k式子表示)
(2)当点A运动到使EF与x轴平行时(如图2),求线段AC与OF的比值;
(3)当点A运动到使点F的位置最低时(如图3),求线段AC与OF的比值.

查看答案和解析>>

科目:初中数学 来源:2007年湖北省宜昌市中考数学试卷(解析版) 题型:解答题

(2007•宜昌)如图1,点A是直线y=kx(k>0,且k为常数)上一动点,以A为顶点的抛物线y=(x-h)2+m交直线y=kx于另一点E,交y轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C.(点A,E,F两两不重合)
(1)请写出h与m之间的关系;(用含的k式子表示)
(2)当点A运动到使EF与x轴平行时(如图2),求线段AC与OF的比值;
(3)当点A运动到使点F的位置最低时(如图3),求线段AC与OF的比值.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《四边形》(08)(解析版) 题型:解答题

(2007•宜昌)如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,△PQR与△BOC相似.

查看答案和解析>>

科目:初中数学 来源:2007年湖北省宜昌市中考数学试卷(解析版) 题型:选择题

(2007•宜昌)如图所示是一个圆锥体,它的俯视图是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案