精英家教网 > 初中数学 > 题目详情
12.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,求证:∠A=∠F 
解:∵∠1=∠2(已知)
∠2=∠DGF (对顶角相等)
∴∠1=∠DGF  ( 等量代换  )
∴BD∥CE (同位角相等,两直线平行)
∴∠3+∠C=180°  (两直线平行,同旁内角互补)
又∵∠3=∠4(已知)
∴∠4+∠C=180°
∴AC∥DF(同旁内角互补,两直线平行)
∴∠A=∠F   (两直线平行,内错角相等).

分析 先证明BD∥CE,得出同旁内角互补∠3+∠C=180°,再由已知得出∠4+∠C=180°,证出 AC∥DF,即可得出结论.

解答 解:∵∠1=∠2(已知)
∠2=∠DGF (对顶角相等)
∴∠1=∠DGF( 等量代换  )
∴BD∥CE (同位角相等,两直线平行)
∴∠3+∠C=180°  (两直线平行,同旁内角互补)
又∵∠3=∠4(已知)
∴∠4+∠C=180°
∴AC∥DF∥(同旁内角互补,两直线平行)
∴∠A=∠F   (两直线平行,内错角相等);
故答案为:对顶角相等;∠DGF;同位角相等,两直线平行;两直线平行,同旁内角互补;AC,DF;两直线平行,内错角相等.

点评 本题考查了平行线的判定与性质、对顶角相等的性质;熟练掌握平行线的判定与性质是解决问题的关键,注意两者的区别.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.计算
(1)4-(-28)+(-2)
(2)(-3)×[(-$\frac{2}{5}$)÷(-$\frac{1}{4}$)]
(3)(-42)÷(-7)-(-6)×4         
(4)-32÷(-3)2+3×(-2)+|-4|
(5)(-24)×($\frac{3}{4}$-$\frac{5}{6}$+$\frac{7}{12}$)          
(6)-14-(1-0.5)÷$\frac{5}{2}$×$\frac{1}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知,如图:在平面直角坐标系中,O为坐标原点,OABC是长方形,点A、C的坐标分别为A(20,0),C(0,8),点D是OA的中点,点P在BC边上运动,△ODP是腰长为10的等腰三角形时,求满足条件的点P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)如图1,已知∠AOB和C、D两点,在∠ADB的内部求作一点P,使得PC=PD且到∠AOB两边的距离相等(保留作图痕迹,不写作法)
(2)如图2,在直线m上确定一点P,使得PA+PB最小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1)操作发现:如图,小明在矩形纸片ABCD的边AD上取中点E,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部,将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.
(2)问题解决:保持(1)中条件不变,若DC=2FC,求$\frac{AD}{AB}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在△ABC中,∠BAC=90°,AB=AC,M为△ABC内一点,恰好满足BA=BM,AM=CM,则∠ABM的度数为30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,二次函数y=ax2+bx+c的图象经过点A(1,4)与B(5,0),C(-1,0).
(1)求该二次函数的解析式;
(2)点D是该二次函数图象上A,B两点之间的一动点,横坐标为x(1<x<5),写出四边形ABCD的面积S关于点D的横坐标x的函数表达式,并求S的最大值;
(3)点E是该二次函数图象上的点,点E是x轴上的点,如果以A、C、E、F为顶点的四边形是以AC为一边的平行四边形,直接写出E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知△ABC是圆内接等腰三角形,它的底边长是8,若圆的半径是5,则△ABC的面积是32或8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.梦想商店进了一批服装,进货单价为50元,如果按每件60元出售,可销售800件,如果每件提价1元出售,其销售量就减少20件.
(1)现在获利12000元,且销售成本不超过24000元,问这种服装销售单价应定多少元?这时应进多少服装?
(2)当销售单价应定多少元时,该商店获得最大利润?最大利润是多少元?

查看答案和解析>>

同步练习册答案