【题目】小李对某班全体同学的业余兴趣爱好进行了一次调查,根据采集到的数据绘制了下面的统计图表.请据图中提供的信息,解答下列问题:
(1)该班共有学生_____________人;
(2)在图1中,请将条形统计图补充完整;
(3)在图2中,在扇形统计图中,“音乐”部分所对应的圆心角的度数___________度:
(4)求爱好“书画”的人数占该班学生数的百分数.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,A(﹣2,3),B(﹣4,﹣1),C(1,0).
(1)P(x0,y0)是△ABC内任一点,经平移后对应点为P1(x0+2,y0+1),将△ABC作同样的平移,得到△A1B1C1,
①直接写出A1、B1、C1的坐标.
②若点E(a﹣2,5﹣b)是点F(2a﹣3,2b﹣5)通过平移变换得到的,求b﹣a的平方根.
(2)若Q为x轴上一点,S△BCQ=S△ABC,直接写出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】植树节期间,某校360名学生参加植树活动,要求每人植树3~6棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵.根据各类型对应的人数绘制了扇形统计图(如图1)和尚未完成的条形统计图(如图2).请解答下列问题:
(1)将条形统计图补充完整;
(2)这20名学生每人植树量的众数为________棵,中位数为________棵;
(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:
第一步:求平均数的公式是;
第二步:在该问题中,n=4,,,,;
第三步:.
①小宇的分析是不正确的,他错在第几步?
请你帮他计算出正确的平均数,并估计这360名学生共植树多少棵.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.
(1)建立如图所示的平面直角坐标系,求抛物线的解析式.
(2)该运动员身高1.8m,在这次跳投中,球在头顶上0.25m处出手,
问:球出手时,他距离地面的高度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知 A(-2,0),B(0,m)两点,且线段AB= 2 ,以 AB 为边在第二象限内作正方形 ABCD。
(1)求点 B 的坐标
(2)在 x 轴上是否存在点 Q,使△QAB 是以 AB 为腰的等腰三角形?若存在,请直接写出点 Q 的坐标,若不存在,请说明理由;
(3)如果在坐标平面内有一点 P(a,3),使得△ABP 的面积与正方形 ABCD 的面 积相等,求 a 的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).
(1)画出△ABC及关于y轴对称的△A1B1C1;
(2)写出点A的对应点A1的坐标,点B的对应点B1的坐标,点C的对应点C1的坐标;
(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,同底数幂的乘法法则为am·an=am+n(其中a≠0 ,m、n为正整数),类似地我们规定关于任意正整数m、n的一种新运算:h(m+n)=h(m)·h(n);比如h(2)=3,则h(4)=h(2+2)=3×3=9,若h(2)=k(k≠0 ),那么h(2n)·h(2020)的结果是( )
A.2k+2020B.2k+1010C.kn+1010D.1022k
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知射线OB平分∠AOC,∠AOC的余角比∠BOC小42°.
(1)求∠AOB的度数:
(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数
(3)在(2)的条件下,画∠AOD的角平分线OE,则∠BOE= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com