精英家教网 > 初中数学 > 题目详情
在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.
小题1:如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系PD+PE+PF=AB;当点P在△ABC内,先在图2中作出图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论
小题2:当点P在△ABC外,先在图3中作出图形,然后写出PD,PE,PF与AB满足的数量关系.(不用说明理由)

小题1:结论:
小题2:
重点考查四边形相关知识。利用等腰三角形和平行四边形的特性试运行解题。
解:(1)作图 …………………1分
结论:…………………2分
证明:过点P作MNBC  
四边形是平行四边形 ………3分
 四边形是平行四边形
……………4分  
,MNBC
  
 …………………5分

…………………6分
(2)作图    ……………7分
图3结论:
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在□ABCD中,点EF分别是BCAD上的两点,且AECF,延长AEDC延长线交于点G,延长CFBA的延长线交于点H,求证:HF = GE

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在□ ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=_______________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把三张大小相同的正方形卡片A、B、C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1与S2的大小关系是
A. S1 >S2             B. S1 < S2           C. S1 = S2           D. 无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列五种图形:①平行四边形 ②矩形 ③菱形 ④正方形  ⑤等腰梯形.
其中既是中心对称图形又是轴对称图形的共有多少种     (    )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:把一张给定大小的矩形卡片ABCD放在间距为10mm的横格纸中(所有横线互相平行),恰好四个顶点都在横格线上,AD与l2交于点E, BD与l4交于点F.

小题1:求证:△ABE≌△CDF;
小题2:已知α=25°,求矩形卡片的周长.(可用计算器求值,答案精确到1mm,参考数据: sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在正方形中,对角线相交于点平分,交于点
小题1:求证:
小题2:点从点出发,沿着线段向点运动(不与点重合),同时点从点出发,沿着的延长线运动,点的运动速度相同,当动点停止运动时,另一动点也随之停止运动.如图2,平分,交于点,过点,垂足为,请猜想三者之间的数量关系,并证明你的猜想;
小题3:在(2)的条件下,当时,求的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:在梯形ABCD中,AD//BC,AD=2,AC=4,BC=6,BD=8,求梯形ABCD的面积。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD中,AD∥BC,∠A=900, 点E为CD边的中点,BE⊥CD,且∠FBE=2∠EBC.在线段AD上取一点F,在线段BE上取一点G,使得BF=BG,连接CG.

小题1:若AB=AF,EG=,求线段CG的长;
小题2:求证:∠EBC+∠ECG =30°

查看答案和解析>>

同步练习册答案