(2013年四川广安10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.
①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)
解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0),
∴,解得。
∴抛物线的解析式为y=﹣x2﹣2x+3。
(2)①∵A(﹣3,0),B(0,3),∴OA=OB=3。∴△AOB是等腰直角三角形。∴∠BAO=45°。
∵PF⊥x轴,∴∠AEF=90°﹣45°=45°。
又∵PD⊥AB,∴△PDE是等腰直角三角形。∴PD越大,△PDE的周长越大。
易得直线AB的解析式为y=x+3,
设与AB平行的直线解析式为y=x+m,
联立,消掉y得,x2+3x+m﹣3=0,
当△=32﹣4×1×(m﹣3)=0,即m=时,直线与抛物线只有一个交点,PD最长,
此时x=,y=+=,
∴点P(,)时,△PDE的周长最大。
②抛物线y=﹣x2﹣2x+3的对称轴为直线,
(i)如图1,点M在对称轴上时,过点P作PQ⊥对称轴于Q,
在正方形APMN中,AP=PM,∠APM=90°,
∴∠APF+∠FPM=90°,∠QPM+∠FPM=90°。
∴∠APF=∠QPM。
∵在△APF和△MPQ中,,∴△APF≌△MPQ(AAS)。∴PF=PQ。
设点P的横坐标为n(n<0),则PQ=﹣1﹣n,即PF=﹣1﹣n,∴点P的坐标为(n,﹣1﹣n)。
∵点P在抛物线y=﹣x2﹣2x+3上,∴﹣n2﹣2n+3=﹣1﹣n,整理得,n2+n﹣4=0。
解得n1=(舍去),n2=,﹣1﹣n=﹣1﹣=,
∴点P的坐标为(,)。
(ii)如图2,点N在对称轴上时,设抛物线对称轴与x轴交于点Q,
∵∠PAF+∠FPA=90°,∠PAF+∠QAN=90°,∴∠FPA=∠QAN。
又∵∠PFA=∠AQN=90°,PA=AN,∴△APF≌△NAQ。
∴PF=AQ。
设点P坐标为P(x,﹣x2﹣2x+3),
则有﹣x2﹣2x+3=﹣1﹣(﹣3)=2,
解得x=(不合题意,舍去)或x=。
∴点P坐标为(,2)。
综上所述,当顶点M恰好落在抛物线对称轴上时,点P坐标为(,),当顶点N恰好落在抛物线对称轴上时,点P的坐标为(,2)。
解析
科目:初中数学 来源: 题型:解答题
一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:
x | 3000 | 3200 | 3500 | 4000 |
y | 100 | 96 | 90 | 80 |
租出的车辆数 | | 未租出的车辆数 | |
租出每辆车的月收益 | | 所有未租出的车辆每月的维护费 | |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知抛物线与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)试判断△AOC与△COB是否相似?并说明理由;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(2013年浙江义乌10分)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数.下表提供了部分采购数据.
采购数量(件) | 1 | 2 | … |
A产品单价(元/件) | 1480 | 1460 | … |
B产品单价(元/件) | 1290 | 1280 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.
(1)求菱形ABCD的周长;
(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;
(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
直线与x、y轴分别交于点A、C.抛物线的图象经过A、C和点B(1,0).
(1)求抛物线的解析式;
(2)在直线AC上方的抛物线上有一动点D,当D与直线AC的距离DE最大时,求出点D的坐标,并求出最大距离是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.
(1)求这条抛物线所对应的函数关系式.
(2)求点C在这条抛物线上时m的值.
(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.
(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.
(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为 ,其中自变量x的取值范围是 ;
(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?
(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com