精英家教网 > 初中数学 > 题目详情
如图,以点O为圆心的两个同心圆,当大圆的弦AB与小圆相切时弦长AB=8,则这两个同心圆所形成的圆环的面积是
16π
16π
分析:设AB与小圆相切时切点为C,连接OC,OA,由切线的性质得到OC垂直于AB,再由垂径定理得到C为AB的中点,由AB的长求出AC的长,在直角三角形AOC中,利用勾股定理求出OA2-OC2=16,圆环的面积=大圆的面积-小圆的面积,利用圆的面积公式表示出圆环的面积,将OA2-OC2=16代入即可求出.
解答:解:连接OC,OA,
∵AB为小圆的切线,C为切点,
∴OC⊥AB,
∴C为AB的中点,即AC=BC=4,
在Rt△OAC中,利用勾股定理得:OA2=AC2+OC2
∴OA2-OC2=16,
则S圆环=πOA2-πOC2=π(OA2-OC2)=16π.
故答案为:16π.
点评:此题考查了切线的性质,垂径定理,勾股定理,以及圆的面积公式,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,以点O为圆心的两个同心圆,半径分别为5和3,若大圆的弦AB与小圆相交,则弦长AB的取值范围是(  )
A、8≤AB≤10B、AB≥8C、8<AB≤10D、8<AB<10

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以点O为圆心的圆与反比例函数的图象相交,若其中一个交点P的坐标为(5,1),则图中两块阴影部分的面积和为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为
(6,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是以点O为圆心的半圆,AB是半圆的一条弦,延长OB与过点A的直线交于点C,AB=BC=OB.
(1)试求∠C的度数.
(2)若 D是AC上一点,且AD=BD,试说明BD是⊙O的切线.
(3)在(2)的情况下,若圆O的半径为2,求BD的长.

查看答案和解析>>

同步练习册答案