精英家教网 > 初中数学 > 题目详情

【题目】计算题。
(1)用适当的方法解下列一元二次方程:x2﹣6x+1=0.
(2)如图,已知E、F分别是矩形ABCD的对角线AC和BD上的点,且AE=DF,求证:BE=CF.

【答案】
(1)解:x2﹣6x+1=0.

移项得,x2﹣6x=﹣1,

配方得,x2﹣6x+9=﹣1+9,

∴(x﹣3)2=8,

∴x﹣3=±2

∴x1=3+2 ,x2=3﹣2


(2)证明:∵矩形ABCD的对角线为AC和BD,

∴AO=CO=BO=DO,

∵E、F分别是矩形ABCD的对角线AC和BD上的点,AE=DF,

∴EO=FO,

在△BOE和△COF中,

∴△BOE≌△COF(SAS),

∴BE=CF.


【解析】(1)用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.(2)根据矩形对角线的性质,矩形对角线互相平分且相等,可知EO=FO,BO=CO,∠BOE=∠COF,可知△BOE≌△COF,即可得出BE=CF.
【考点精析】利用矩形的性质对题目进行判断即可得到答案,需要熟知矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,点A的坐标为(﹣2,0),OB=OA,且∠AOB=120°.

(1)求经过A,O,B三点的抛物线的解析式.
(2)在(1)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.
(3)若点M为抛物线上一点,点N为对称轴上一点,是否存在点M,N使得A,O,M,N构成的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在ABC中,AE平分∠BACCBFAE上一点,且FDBCD点.

(1)试猜想∠EFDBC的关系,并说明理由;

(2)如图②,当点FAE的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.

        

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2 , b1≠b2 , 那么称这两个一次函数为“平行一次函数”. 如图,已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”

(1)若函数y=kx+b的图象过点(3,1),求b的值;
(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1:2,求函数y=kx+b的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:

(1)容器内原有水多少?

(2)求Wt之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E为AD的中点,请只用无刻度的直尺作图

(1)如图1,在BC上找点F,使点F是BC的中点;
(2)如图2,在AC上取两点P,Q,使P,Q是AC的三等分点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分8分)

为了加强学生课外阅读,开阔视野,某校开展了书香校园,从我做起的主题活动.学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:

请根据图表信息回答下列问题:

(1)频数分布表中的

(2)将频数分布直方图补充完整;

(3)学校将每周课外阅读时间在小时以上的学生评为阅读之星,请你估计该校名学生中评为阅读之星的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为( )

A.80°
B.90°
C.100°
D.130°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.

(1)将下面的表格补充完整:

正多边形的边数

3

4

5

6

……

18

α的度数

   

   

   

   

……

   

(2)根据规律,是否存在一个正n边形,使其中的∠α=20°?若存在,直接写出n的值;若不存在,请说明理由.

(3)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案