7£®£¨1£©ÔËÓó˷¨¹«Ê½½øÐмÆËã
¢Ù2022-1982£»
¢Ú£¨2x-y+3£©£¨2x+y-3£©£®
£¨2£©»¯¼ò¼ÆËã
¢Ù£¨-$\frac{1}{2}$£©-1-£¨3.14-¦Ð£©0+0.254¡Á45£»
¢Ú2¡Á3m+3m-3m+1£»
¢ÛÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨2a+b£©2-£¨3a-b£©2+5a£¨a-b£©£¬ÆäÖÐa=$\frac{1}{10}$£¬b=$\frac{1}{5}$£®
¢ÜÒÑÖªA¡¢BÕûʽ£¬Ä³Í¬Ñ§ÔÚ¼ÆËãA+Bʱµ±³ÉA¡ÁBÀ´¼ÆËãµÃµ½8x5y3-12x4y2£®Èç¹ûB=-2x2y£¬ÇëÄãÇó³öA+BµÄÕýÈ·´ð°¸£®
¢ÝÒÑÖªx2+2y2+6y-2xy=-9£¬ÇóxyµÄÖµ£®

·ÖÎö £¨1£©¸ù¾Ýƽ·½²î¹«Ê½¼´¿É»¯¼ò£»
£¨2£©¢Ù¸ù¾Ý¸ºÕûÊýÖ¸ÊýÃÝÒÔ¼°ÁãÖ¸ÊýÃݵÄÒâÒå¼´¿ÉÇó³ö´ð°¸£»
¢Ú¸ù¾Ýͬµ×ÊýÖ¸ÊýÃݵÄÔËËã·¨Ôò¼´¿ÉÇó³ö´ð°¸£»
¢ÛÏÈ»¯¼ò£¬È»ºó½«aÓëbµÄÖµ´úÈë¼´¿ÉÇó³ö´ð°¸£»
¢Ü¸ù¾ÝÕûʽµÄÔËËã·¨Ôò¼´¿ÉÇó³öAµÄ±í´ïʽ£¬´Ó¶ø¿ÉÇó³öA+B£»
¢ÝÀûÓÃÍêȫƽ·½¹«Ê½½øÐÐÅä·½¼´¿ÉÇó³ö´ð°¸£®

½â´ð ½â£º£¨1£©¢Ùԭʽ=£¨200+2£©£¨200-2£©
=2002-4
=39996
¢Úԭʽ=[2x-£¨y-3£©][2x+£¨y-3£©]
=4x2-£¨y-3£©2
=4x2-£¨y2-6y+9£©
=4x2-y2+6y-9
£¨2£©¢Ùԭʽ=£¨-2£©-1+$\frac{1}{{4}^{4}}$¡Á45=-3+4=1
¢Úԭʽ=2¡Á3m+3m-3¡Á3m=0
¢Ûµ±a=$\frac{1}{10}$£¬b=$\frac{1}{5}$ʱ£¬
ԭʽ=£¨2a+b+3a-b£©£¨2a+b-3a+b£©+5a£¨a-b£©
=5a£¨2b-a£©+5a£¨a-b£©
=5a£¨2b-a+a-b£©
=5ab
=$\frac{1}{10}$
¢ÜA=£¨8x5y3-12x4y2£©¡Â£¨-2x2y£©
=-4x3y2+6x2y
¡àA+B=£¨-4x3y2+6x2y£©-2x2y
=-4x3y2+4x2y
¢Ý¡ßx2+2y2+6y-2xy=-9£¬
¡àx2-2xy+y2+y2+6y+9=0£¬
¡à£¨x-y£©2+£¨y+3£©2=0£¬
¡àx=y£¬y=-3£¬
¡àx=y=-3£¬
¡àxy=£¨-3£©-3=£¨-$\frac{1}{3}$£©3=-$\frac{1}{27}$

µãÆÀ ±¾Ì⿼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÔËÓÃÕûʽµÄÔËËã·¨Ôò£¬±¾ÌâÊôÓÚ»ù´¡ÌâÐÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®£¨-$\frac{2}{3}}$£©2=£¨¡¡¡¡£©
A£®$\frac{9}{4}$B£®$\frac{4}{9}$C£®$-\frac{9}{4}$D£®$-\frac{4}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ÊǹØÓÚx£¬yµÄ¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{2x+£¨m-1£©y=1}\\{nx-y=1}\end{array}\right.$µÄ½â£¬ÊÔÇó£¨m+n£©2013µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªx2-4x+1=0£¬Çóx2+x-2Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª£¨a-2£©2+£¨b+2£©2+£¨c-3£©2=0£¬Çó$\frac{4}{3}$a2b3c4•£¨3ab2c3£©2¡Â6£¨a2b3c4£©2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Æ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖª?ABCDµÄËĸö¶¥µã×ø±ê·Ö±ðÊÇA£¨m£¬2m£©£¬B£¨n£¬2n£©£¬C£¨n+3£¬2n£©£¬
D £¨p£¬q£©£¬Ôòp£¬qËùÂú×ãµÄ¹ØϵʽÊÇ£¨¡¡¡¡£©
A£®q=2pB£®q=2p-6C£®p=2p+3D£®q=2p+6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®£¨1£©¼ÆË㣨x+y£©2-y£¨2x+y£©£»
£¨2£©ÏÈ»¯¼ò£¬ÔÙÇó´úÊýʽµÄÖµ£º£¨$\frac{a+2}{{a}^{2}-2a}$-$\frac{a-1}{{a}^{2}-4a+4}$£©¡Â$\frac{a-4}{a}$£¬ÆäÖÐa=2-$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®»¯¼ò£º$\frac{{x}^{2}-2x}{{x}^{2}-4}$+$\frac{x+4}{x+2}$£¬²¢È¡Ò»¸öÄãϲ»¶µÄÖµ´úÈë¼ÆË㣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¾ØÐÎABCDµÄ±ßAD£¬AB·Ö±ðΪ8£¬6£¬¶Ô¸Ã¾ØÐνøÐÐÕÛµþ£®
·½Ê½Ò»£ºÑضԽÇÏßBDÕÛµþ£¬µãCÂäÔÚC¡ä´¦£¬BC¡äÓëAD½»ÓÚµãE£¬¡÷BDC¡äÓë¡÷ABDÖصþ²¿·ÖµÄÃæ»ý¼ÇΪS¡÷BDE£»
·½Ê½¶þ£ºÑØMNÕÛµþ£¬µãBÓëµãDÖغϣ¬µãAÂäÔÚA¡ä´¦£¬ËıßÐÎA¡äMNDÓëËıßÐÎMNCDÖصþ²¿·ÖµÄÃæ»ý¼ÇΪS¡÷MNDÅжÏS¡÷BDEÓëS¡÷MND¼äµÄÊýÁ¿¹Øϵ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸