精英家教网 > 初中数学 > 题目详情
如图,已知三角形ABC,
(1)请画出另一个三角形,使它与已知三角形相似比为1:2(尺规作图,要求不写作法,只保留作图痕迹);
(2)若给出原三角形ABC的面积为2a,求所作三角形的面积.
分析:(1)先作出△ABC三边的中点,再顺次连接各个中点,即可得出出新的三角形与已知三角形相似比为1:2;
(2)根据相似三角形的性质和原三角形ABC的面积,即可求出所作三角形的面积.
解答:解:(1)作图如下:


(2)∵新作三角形与已知三角形相似比为1:2,
∴新作三角形与已知三角形的面积之比为1:4,
∴所作三角形的面积是:
1
4
•2a=
a
2
点评:此题考查了作图-相似变换,用到的知识点所相似三角形的性质和尺规作图,解题的关键是根据要求作出图形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O,且AO平分∠BAC,那么图中全等三角形共有(  )对.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知三角形ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于精英家教网点E,与AC切于点D.
(1)求证:DE∥OC;
(2)若AD=2,DC=3,求tan∠ADE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB与x轴交于A(6,0)点,与y轴交于B(0,10)点,点M的坐标为(0,4),点P(x,y精英家教网)是折线O→A→B上的动点(不与O点、B点重合),连接OP,MP,设△OPM的面积为S.
(1)求S关于x的函数表达式,并求出x的取值范围;
(2)当△OPM是以OM为底边的等腰三角形时,求S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•裕华区二模)如图①,将两个等腰直角三角形叠放在一起,使上面三角板的一个锐角顶点与下面三角板的直角顶点重合,并将上面的三角板绕着这个顶点逆时针旋转,在旋转过程中,当下面三角板的斜边被分成三条线段时,我们来研究这三条线段之间的关系.
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

按要求画图并填空:如图,已知三角形ABC及点D,CB⊥AB,B为垂足.
(1)作直线AD;
(2)延长AB到E,使得BE=AB,连接CE;
(3)作射线DE;
(4)图中线段
CB
CB
的长表示点C到线段AE所在直线的距离.

查看答案和解析>>

同步练习册答案