精英家教网 > 初中数学 > 题目详情
10.如图电路图中,闭合其中2个开关,能使其中一个灯泡亮的概率是$\frac{1}{2}$.

分析 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与电路被接通的情况,再利用概率公式求解即可求得答案.

解答 解:画树状图得:

∵共有12种等可能的结果,能使其中一个灯泡亮的有6种情况,
∴能使其中一个灯泡亮的概率是$\frac{6}{12}$=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$

点评 本题主要考查用列表法与树状图法求概率,关键是通过列表求出两指针所指数字的积为偶数的概率,用到的知识点为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=$\frac{m}{n}$.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,作AF⊥AD,AF=AD,得到△AFB,连接EF.
求证:
(1)BF=CD
(2)BE2+DC2=DE2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:如图,在△ABC中,AC=AB=10,BC=16,动点P从A点出发,沿线段AC运动,速度为1个单位/s,时间为t秒,P点关于BC的对称点为Q.
(1)当t=2时,则CN的长为$\frac{32}{5}$;
(2)连AQ交线段BC于M,若AM=2MQ,求t的值;
(3)若∠BAQ=3∠CAQ时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤24,且x为整数)出售,可卖出(30-x)件.若利润为y,则y关于x的解析式y=-(x-25)2+25,若利润最大,则最大利润为24元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数y=$\frac{1}{5}$x2+bx+c的图象抛物线经过A、C两点.
(1)求该二次函数的表达式;
(2)F、G分别为x轴、y轴上的动点,首尾顺次连接D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;
(3)抛物线上是否存在点P,使△ODP的面积为8?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1,已知∠ABC=90°,动点P在射线BC上(点P与点B不重合)移动,△ABE与△APQ均是等边三角形,连结QE并延长交射线BC于点F.
(1)如图2,当BP=BA时,∠EBF=30°,猜想∠QFC=60°;
(2)如图1,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明;
(3)已知线段AB=2$\sqrt{3}$,设BP=x,点Q到射线BC的距离为y,请用含x的代数式表示y,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程2-(x-a)(x-b)=0的两根,且a<b,则a、b、m、n的大小关系是(  )
A.a<m<n<bB.m<a<b<nC.a<m<b<nD.m<a<n<b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知线段a,c.求作Rt△ABC,使∠C=90°,AB=c,BC=a(尺规作图,保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知有理数a、b在数轴上的对应的位置如图所示,化简:2|a+b|-|a-b|.

查看答案和解析>>

同步练习册答案