精英家教网 > 初中数学 > 题目详情

【题目】在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1 , 旋转角为θ(0°<θ<90°),连接AC1、BD1 , AC1与BD1交于点P.
(1)如图1,若四边形ABCD是正方形.
①求证:△AOC1≌△BOD1
②请直接写出AC1 与BD1的位置关系.

(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1 . 判断AC1与BD1的位置关系,说明理由,并求出k的值.

(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1 , 设AC1=kBD1 . 请直接写出k的值和AC12+(kDD12的值.

【答案】
(1)

①证明:如图1,

∵四边形ABCD是正方形,

∴OC=OA=OD=OB,AC⊥BD,

∴∠AOB=∠COD=90°,

∵△COD绕点O按逆时针方向旋转得到△C1OD1

∴OC1=OC,OD1=OD,∠COC1=∠DOD1

∴OC1=OD1,∠AOC1=∠BOD1=90°+∠AOD1

在△AOC1和△BOD1

∴△AOC1≌△BOD1(SAS);

②AC1⊥BD1


(2)

解:AC1⊥BD1

理由如下:如图2,

∵四边形ABCD是菱形,

∴OC=OA= AC,OD=OB= BD,AC⊥BD,

∴∠AOB=∠COD=90°,

∵△COD绕点O按逆时针方向旋转得到△C1OD1

∴OC1=OC,OD1=OD,∠COC1=∠DOD1

∴OC1=OA,OD1=OB,∠AOC1=∠BOD1

∴△AOC1∽△BOD1

∴∠OAC1=∠OBD1

又∵∠AOB=90°,

∴∠OAB+∠ABP+∠OBD1=90°,

∴∠OAB+∠ABP+∠OAC1=90°,

∴∠APB=90°

∴AC1⊥BD1

∵△AOC1∽△BOD1

= = = =

∴k=


(3)

解:如图3,与(2)一样可证明△AOC1∽△BOD1

= = =

∴k=

∵△COD绕点O按逆时针方向旋转得到△C1OD1

∴OD1=OD,

而OD=OB,

∴OD1=OB=OD,

∴△BDD1为直角三角形,

在Rt△BDD1中,

BD12+DD12=BD2=100,

∴(2AC12+DD12=100,

∴AC12+(kDD12=25.


【解析】(1)①如图1,根据正方形的性质得OC=OA=OD=OB,AC⊥BD,则∠AOB=∠COD=90°,再根据旋转的性质得OC1=OC,OD1=OD,∠COC1=∠DOD1 , 则OC1=OD1 , 利用等角的补角相等得∠AOC1=∠BOD1 , 然后根据“SAS”可证明△AOC1≌△BOD1;②由∠AOB=90°,则∠OAB+∠ABP+∠OBD1=90°,所以∠OAB+∠ABP+∠OAC1=90°,则∠APB=90°所以AC1⊥BD1;(2)如图2,根据菱形的性质得OC=OA= AC,OD=OB= BD,AC⊥BD,则∠AOB=∠COD=90°,再根据旋转的性质得OC1=OC,OD1=OD,∠COC1=∠DOD1 , 则OC1=OA,OD1=OB,利用等角的补角相等得∠AOC1=∠BOD1 , 加上 ,根据相似三角形的判定方法得到△AOC1∽△BOD1 , 得到∠OAC1=∠OBD1 , 由∠AOB=90°得∠OAB+∠ABP+∠OBD1=90°,则∠OAB+∠ABP+∠OAC1=90°,则∠APB=90°,所以AC1⊥BD1;然后根据相似比得到 = = = ,所以k= ;(3)与(2)一样可证明△AOC1∽△BOD1 , 则 = = = ,所以k= ;根据旋转的性质得OD1=OD,根据平行四边形的性质得OD=OB,则OD1=OB=OD,于是可判断△BDD1为直角三角形,根据勾股定理得BD12+DD12=BD2=100,所以(2AC12+DD12=100,于是有AC12+(kDD12=25.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某水果专卖店销售樱桃,其进价为每千克元,按每千克元出售,平均每天可售出千克,后来经过市场调查发现,单价每千克降低元,则平均每天的销售可增加千克,若该专卖店销售这种樱桃要想平均每天获利元,请回答:

)每千克樱桃应降价多少元?

)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 ,以点为顶点、为腰在第三象限作等腰

)求点的坐标.

)如图 轴负半轴上一个动点,当点沿轴负半轴向下运动时,以为顶点, 为腰作等腰,过轴于点,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为 的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,FCD上一点,∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度数为整数,则∠C的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一条直线与反比例函数y= (x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y= (x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为(
A.4
B.
C.5
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,A,B,C的对边分别为a、b、c,下列说法中错误的是

A.如果CB=A,则ABC是直角三角形,且C=90

B.如果,则ABC是直角三角形,且C=90

C.如果(c+a)( c-a)=,则ABC是直角三角形,且C=90

D.如果ABC325,则ABC是直角三角形,且C=90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1计算2a+12﹣(2a+1)(﹣1+2a);

2)用乘法公式计算:200222001×2003

(3)解不等式组:,并把解集在数轴上表示出来;

(4)解方程组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y1=a(x+2)2-3与y2= (x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:
①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是(  )

A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

同步练习册答案