精英家教网 > 初中数学 > 题目详情

(本题满分12分)春节期间,七(1)班的李平、王丽等同学随家长一同到某公园游玩,下面是购买门票时,李平与他爸爸的对话(如图),试根据图中的信息,解答下列问题:

⑴李平他们一共去了几个成人,几个学生?

⑵请你帮助算一算,用哪种方式购票更省钱?说明理由。

⑶购完票后,李平发现七⑵班的张明等8名同学和他们的12名家长共20人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

设成人人数为x人,则学生人数为(12-x)人,则:由题中所给的票价单可得:

35x+35/2(12-x)=350┉┉3分

解得:x=8

学生人数为12-8=4人,成人人数为8人.┉┉5分

(2)如果买团体票,按16人计算,共需费用:35×0.6×16=336元

因为336<350,所以,购团体票更省钱.┉┉10分

(3)最省的购票方案为:买16人的团体票,再买4张学生票.此时的购票费用为:

16×35×0.6+4×17.5=406元.┉┉12分

 

 解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分12分,任选一题作答.)
Ⅰ、如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.
(1)当0<t<
52
时,证明DC⊥OA;
(2)若△OCD的面积为S,求S与t的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、E、D为顶点的四边形是梯形,求点E的坐标.
Ⅱ、(1)如图Ⅱ-1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图Ⅱ-2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.
(3)如图Ⅱ-3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分12分)一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.但是最低价为每只16元.
【小题1】(1)求一次至少买多少只,才能以最低价购买?
【小题2】(2)写出专买店当一次销售xx>10)只时,所获利润y元)与x(只)之间的函数关系式,并写出自变量x的取值范围;
【小题3】(3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50只赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到多少?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省启东市九年级寒假作业检测数学卷 题型:解答题

(本题满分12分)

1.(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.

证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,

AB=BC.∴∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB

=∠MAE.

(下面请你完成余下的证明过程)

2.(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

3.(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN=            °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年湖北省荆州市九年级第二次质检试题数学卷 题型:解答题

(本题满分12分)如图甲,分别以两个彼此相邻的正方形?OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.

1.(1)求B点坐标;

2.(2)求证:ME是⊙P的切线;

3.(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;

②若FQ=t,SACQ=S,直接写出S与t之间的函数关系式.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年江苏省盐城市九年级上学期学情调查数学卷 题型:解答题

(本题满分12分)某商场购进一批单价为16元日用品,销售一段时间后,为了获得更多利润,商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数Y(件)是价格X(元/件)的一次函数

1.(1)试求Y 与X之间的关系式。

2.(2)在商品积压,且不考虑其它因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本)

 

查看答案和解析>>

同步练习册答案