精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.

(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).

【答案】
(1)

解:把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,

解得

∴二次函数解析式为y=﹣x2+2x+4,

配方得y=﹣(x﹣1)2+5,

∴点M的坐标为(1,5);


(2)

解:设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得,

解得

∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F

把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)

∴1<5﹣m<3,解得2<m<4;


(3)

解:连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5)

∵MG=1,GC=5﹣4=1

∴MC= = =

把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),

∵NG=GC,GM=GC,

∴∠NCG=∠GCM=45°,

∴∠NCM=90°,

由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点

①若有△PCM∽△BDC,则有

∵BD=1,CD=3,

∴CP= = =

∵CD=DA=3,

∴∠DCA=45°,

若点P在y轴右侧,作PH⊥y轴,

∵∠PCH=45°,CP=

∴PH= =

把x= 代入y=﹣x+4,解得y=

∴P1 );

同理可得,若点P在y轴左侧,则把x=﹣ 代入y=﹣x+4,解得y=

∴P2 , );

②若有△PCM∽△CDB,则有

∴CP= =3

∴PH=3 ÷ =3,

若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;

若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7

∴P3(3,1);P4(﹣3,7).

∴所有符合题意得点P坐标有4个,分别为P1 ),P2 , ,P3(3,1),P4(﹣3,7).


【解析】本题考查了二次函数的图象与性质、一次函数解析式及相似三角形性质,解题的关键是分类讨论三角形相似的不同情况,结合特殊角的使用来求出点P的坐标.(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有一个小立方块,每一个面上分别写着数字1、2、3、4、5、6,有三个人分别从不同角度观察的结果如图所示,问这个小立方块相对的两个面上的数字分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在大小为4×4的正方形网格中,是相似三角形的是(  )
A.①和②
B.②和③
C.①和③
D.②和④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图),现测药物8分钟燃毕,此时空气中每立方米含药量为6毫克,请根据题中所提供的信息,回答下列问题

(1)药物燃烧时,y关于x的函数关系式为,自变量x的取值范围是;药物燃烧完后,y与x的函数关系式为
(2)研究表明,当空气中的每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= (k≠0)的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,对称轴为直线x= 的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A

(1)求抛物线的解析式;
(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;
(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程组与证明
(1)解方程组:
(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.

查看答案和解析>>

同步练习册答案