精英家教网 > 初中数学 > 题目详情
如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.
精英家教网(1)求证:PE=PD
(2)若CE:AC=1:5,BC=10,求BP的长.
分析:(1)过点D作DF∥AC交BC于点F,由等腰三角形性质和平行线性质可得∠DBF=∠DFB,可推得DB=DF,由因为已知CE=BD,即可得DF=CE,通过AAS可得△DFP≌△ECP,即得到PE=PD.
(2)由已知条件易证得△BDF∽△BAC,且
BF
BC
=
BD
BA
=
1
5
,由BC=10,可得BF、EC的长;由△DFP≌△ECP可得PF的长,即可得BP的长.
解答:精英家教网(1)证明:过点D作DF∥AC交BC于点F,
∴∠ACB=∠DFB,∠FDP=∠E
∵AB=AC(已知),
∴∠ACB=∠ABC,
∴∠ABC=∠DFB,
∴DF=DB;
又∵CE=BD(已知),
∴CE=DF;
又∵∠DPF=∠CPE,
∴△ECP≌△DFP,
∴PE=PD;

(2)解:∵CE=BD,AC=AB,CE:AC=1:5(已知),
∴BD:AB=1:5,
∵DF∥AC,
∴△BDF∽△BAC,
BF
BC
=
BD
BA
=
1
5

∵BC=10,
∴BF=2,FC=8,
∵△DFP≌△ECP,
∴FP=PC,
∴PF=4,
则BP=BF+FP=6.
点评:本题主要考查全等三角形全等的判定与性质及等腰三角形的性质;涉及到相似三角形、等腰三角形等知识点,是一道综合题型,正确作出辅助线是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案