精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,点A,B,C都是格点.

(1)将△ABC向左平移6个单位长度得到△A1B1C1,请画出△A1B1C1

(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2

(3)作出△ABC关于直线l对称的△A3B3C3,使A,B,C的对称点分别是A3,B3,C3

(4)△A2B2C2与△A3B3C3成_____________,△A1B1C1与△A2B2C2成_____________(填“中心对称”或“轴对称”).如果成中心对称请你在图中确定其对称中心点P的位置.

【答案】(1)详见解析;(2)详见解析;(3)详见解析;(4)轴对称,中心对称

【解析】

(1)根据平移的性质画出A1B1C1即可;(2)根据旋转的性质即可得出答案;(3) 根据轴对称d 性质即可作出;(4) 利用轴对称和中心对称的性质即可作答.

(1) 如图:△A1B1C1即为所求;

(2) 如图:△A2B2C2即为所求;

(3) 如图:A3,B3,C3即为所求;

(4)轴对称, 中心对称

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学开展八荣八耻演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100)如下图所示.

1)根据下图,分别求出两班复赛的平均成绩和方差;

2)根据(1)的计算结果,分析哪个班级的复赛成绩较好?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.

1猜想:线段OD与BC有何数量和位置关系,并证明你的结论.

2求证:PC是⊙O的切线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.

(1)求证:此方程总有两个实数根;

(2)若此方程有一个根大于0且小于1,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有长为 24m 的篱笆,现一面利用墙(墙的最大可用长度 a 10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽 AB xm,面积为 Sm2

1 S x 的函数关系式及 x 值的取值范围;

2 要围成面积为 45m2 的花圃,AB 的长是多少米?

3 AB 的长是多少米时,围成的花圃的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知A(2,0)、B(3,1)、C(1,3).

(1)画出ABC沿x轴负方向平移2个单位后得到的△A1B1C1,并写出B1的坐标   

(2)以A1点为旋转中心,将△A1B1C1逆时针方向旋转90°得△A1B2C2,画出△A1B2C2,并写出C2的坐标   

(3)直接写出过B、B1、C2三点的圆的圆心坐标为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=x2+(2t﹣2)x+t2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.

(1)如图1,当t=0时,连接AC、BC,求ABC的面积;

(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;

(3)如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:

(1)画出ABC关于y轴对称的A1B1C1,并写出A1的坐标.

(2)画出ABC绕点B逆时针旋转90°后得到的A2B2C2,并写出A2的坐标.

(3)画出A2B2C2关于原点O成中心对称的A3B3C3,并写出A3的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度 米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.

(3)登山多长时间时,甲、乙两人距地面的高度差为50米?

查看答案和解析>>

同步练习册答案