精英家教网 > 初中数学 > 题目详情
精英家教网如图,边长为4的菱形ABCD中,∠DAB=60°,E是AD上的动点(与A,D不重合),F是CD上的动点,且AE+CF=4.
(1)求证:不论点E,F的位置如何变化,△BEF是正三角形;
(2)设AE=x,△BEF的面积是S,求S与x的函数关系式.
分析:(1)连接BD,四边形ABCD是菱形得△ABD是正三角形(∠ABD=60°),再证出△ABE≌△DBF,得BE=BF,∠ABE=∠DBF,由此得出∠EBF=60°,问题得证;
(2)作EG⊥AB,利用勾股定理得出BE的长,再求正三角形△BEF的面积.
解答:(1)证明:
连接BD,
∵四边形ABCD是菱形,∠DAB=60°,∠ADC=120°,
∴△ABD是正三角形.
∴∠ABD=∠ADB=60°,AB=BD,
又因AE+CF=4,DF+CF=4,
∴AE=DF,
而∠FDB=∠ADC-∠ADB=60°=∠DAB,
∴△AEB≌△DBF,
∴BE=BF,∠ABE=∠DBF,
∵∠EBF=∠EBD+∠DBF=∠EBD+∠ABE=∠ABD=60°
∴△BEF是正三角形.

(2)解:过E作EG⊥AB于点G,
∵AE=x,∠DAB=60°,
∴EG=
3
2
x,AG=
1
2
x,
∴BG=4-
1
2
x,
∴BE2=EG2+BG2=(
3
2
x
2+(4- 
1
2
x
2=x2-4x+16
作FH⊥EB垂足为点H,
S△BEF=
1
2
BE•FH=
1
2
BE
3
2
BE=
3
4
BE2=
3
4
(x2-4x+16).
精英家教网
点评:此题主要考查菱形的性质,等边三角形的判定,勾股定理和锐角三角函数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•普陀区二模)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上时,弧BC的长度等于
π
3
π
3
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•牡丹江)如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是
3
n-1
3
n-1

查看答案和解析>>

同步练习册答案