精英家教网 > 初中数学 > 题目详情
精英家教网二次函数的图象如图所示,P为图象顶点,A为图象与y轴交点.
(1)求二次函数的图象与x轴的交点B、C的坐标;
(2)在x轴上方的函数图象上存在点D,使△BCD的面积是△AOB的面积的6倍,求点D的坐标.
分析:(1)依题意,由图象可知顶点P的坐标(2,9),可设二次函数的解析式为y=a(x-2)2+9,把点A坐标代入求出a值.
又因为B,C是函数与x轴的交点,即y=0,代入得0=-(y-2)2+9,求得x的值;
(2)先求出S△AOB,S△AOB=
1
2
×1×5=
5
2
,因为S△BCD=6S△AOB,易求出S△BCD.设D(x,y),依题意可知D点在抛物线上,将y=5代入抛物线解析式可求出x的取值.
解答:解:(1)由图象可知,顶点为P(2,9).
设二次函数的解析式为y=a(x-2)2+9.
∵图象过点A(0,5),
∴5=a(0-2)2+9,
解得a=-1.
∴y=-(x-2)2+9,(2分)
当y=0时,0=-(x-2)2+9.
解得x1=-l,x2=5.
∴图象与x轴的交点坐标B(-1,0),C(5,0)(3分)

(2)设D(x,y),其中y>0.
∵S△BCD=6S△AOB
1
2
×6•|y|=6×
1
2
×1×5

∴|y|=5.
∴y=5(舍负值)(4分)
当y=5时,5=-(x-2)2+9.
解得x1=0,x2=4.
∴点D的坐标为D1(0,5),D2(4,5)(6分)
点评:熟练掌握二次函数图象与x轴,y轴交点的意义,二次函数顶点坐标与解析式之间的关系,二次函数对称轴的性质和特点,注意二次函数与一次函数以及三角形之间可能出现的出题点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知二次函数的图象如图所示,则这个二次函数的表达式为(  )
A、y=x2-2x+3B、y=x2-2x-3C、y=x2+2x-3D、y=x2+2x+3

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知二次函数的图象如图所示,则
(1)这个二次函数的解析式是
y=x2-2x

(2)当x=
3或-1
时,y=3
(3)当x的取值范围是
x<0或x>2
时,y>0.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知二次函数的图象如图所示,求它的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数的图象如图所示,P为图象顶点,A为图象与y轴交点.
(1)求二次函数的图象与x轴的交点B、C的坐标;
(2)根据图象回答当x取什么值时,函数值y大于0?

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数的图象如图所示,则a
0,b
0,c
0.

查看答案和解析>>

同步练习册答案