精英家教网 > 初中数学 > 题目详情

【题目】如图所示,污水处理公司为某楼房建一座周长为30米的三级污水处理池,平面图为矩形米,中间两条隔墙分别为,池墙的厚度不考虑.

(1)用含的代数式表示外围墙的长度;

(2)如果设计时要求矩形水池恰好被隔墙分成三个全等的矩形,且它们均与矩形相似,求此时的长

(3)如果设计时要求矩形水池恰好被隔墙分成三个全等的正方形.已知池的外围墙建造单价为每米400元,中间两条隔墙建造单价每米300元,池底建造的单价为每平方米100元.试计算此项工程的总造价.(结果精确到1元)

【答案】(1)AD=15-x;(2);(3)18469.

【解析】

试题(1)根据矩形的周长等于相邻两边和的2倍,可求AD=15-x(米);

(2)根据题意可知,即,且,据此可列方程,求出AB的长;

(3)根据题意可知AD=3x米,则有15-x=3x,求出x的值即可求出总造价.

试题解析:(1)米;

(2)由题意可知,,即,且

解得:(不合题意,舍去)

(3)由题意知米,则有

解得

总造价:=

时,原式=(元)

答:此项工程的总造价约为18469元.

考点: (1)一元二次方程的应用;(2)一元一次方程的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC和△DBE是绕点B旋转的两个相似三角形,其中∠ABC与∠DBE、∠A与∠D为对应角.

(1)如图①,若△ABC和△DBE分别是以∠ABC与∠DBE为顶角的等腰直角三角形,且两三角形旋转到使点BCD在同一条直线上的位置时,请直接写出线段AD与线段EC的关系;

(2)若△ABC和△DBE为含有30°角的直角三角形,且两个三角形旋转到如图②的位置时,试确定线段AD与线段EC的关系,并说明理由;

(3)若△ABC和△DBE为如图③的两个三角形,且∠ACBα,∠BDEβ,在绕点B旋转的过程中,直线ADEC夹角的度数是否改变?若不改变,直接用含αβ的式子表示夹角的度数;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DABC外接圆上的点,且BD位于AC的两侧,DEAB,垂足为EDE的延长线交此圆于点FBGAD,垂足为GBGDE于点HDCFB的延长线交于点P,且PC=PB

(1)求证:∠BAD=PCB

(2)求证:BGCD

(3)设ABC外接圆的圆心为O,若AB=DHCOD=23°,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).

(1)求反比例函数的解析式;

(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;

(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB⊙O的直径,C,D⊙O,AB5,BC3.

(1) sin∠BAC的值;

(2) 如果OE⊥AC, 垂足为E,OE的长;

(3) tan∠ADC的值.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OAOB=OP2,我们就把∠APB叫做∠MON的智慧角.

(1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB是∠MON的智慧角.

(2)如图1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,连结AB,用含α的式子分别表示∠APB的度数和△AOB的面积.

(3)如图3,C是函数y=(x>0)图象上的一个动点,过C的直线CD分别交x轴和y轴于A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正确的结论有________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB为半圆O的直径,C、D是半圆O上的两点,若直径AB的长为4,且BC=2,∠DAC=15°.

(1)∠DAB的度数;

(2)求图中阴影部分的面积(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 

(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2ABC位似,且位似比为2:1,点C2的坐标是   

(3)A2B2C2的面积是   平方单位.

查看答案和解析>>

同步练习册答案