精英家教网 > 初中数学 > 题目详情
17.某企业开展献爱心扶贫活动,将购买的60吨大米运往贫困地区帮扶贫困居民,现有甲、乙两种货车可以租用.已知一辆甲种货车和3辆乙种货车一次可运送29吨大米,2辆甲种货车和3辆乙种货车一次可运送37吨大米.
(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨大米?
(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用w(元)与租用甲种货车的数量x(辆)之间的函数关系式.
(3)在(2)的条件下,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?

分析 (1)根据题意列出方程组求解即可;
(2)将两车的费用相加即可求得总费用的函数解析式;
(3)根据一次函数得到当x越小时,总费用越小,分别代入1,2,3,4得到最小值即可.

解答 解:(1)设甲种货车x辆,乙种货车y辆,
根据题意得:$\left\{\begin{array}{l}{x+3y=29}\\{2x+3y=37}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=8}\\{y=7}\end{array}\right.$,
答:甲车装8吨,乙车装7吨;

(2)设甲车x辆,则乙车为(8-x)辆,
根据题意得:w=500x+450(8-x)=50x+3600(1≤x≤8);

(3)∵当x=1时,则8-x=7,w=8+7×7=57<60吨,不合题意;
当x=2时,则8-x=6,w=8×2+7×6=58<60吨,不合题意;
当x=3时,则8-x=5,w=8×3+7×5=59<60吨,不合题意;
当x=4时,则8-x=4,w=8×4+7×4=60吨,符合题意;
∴租用4辆甲车,4辆乙车时总运费最省,为50×4+3600=3800元.

点评 该题主要考查了列二元一次方程组或二元一次方程来解决现实生活中的实际应用问题;解题的关键是深入把握题意,准确找出命题中隐含的数量关系,正确列出方程或方程组来分析、推理、解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.
(1)求∠DOA的度数;
(2)求证:直线ED与⊙O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.关于x的分式方程$\frac{m}{{x}^{2}-4}$-$\frac{1}{x+2}$=0无解,则m=0或-4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是(  )
A.60°B.120°C.60°或120°D.30°或150°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=(  )
A.2B.-2C.4D.-4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在△ABC中,AB=AC,过点A作AD∥BC.若∠1=70°,则∠BAC的大小为(  )
A.30°B.40°C.50°D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,已知AB是⊙O的直径,点C在⊙O上,若∠CAB=40°,则∠ABC的度数为50°.

查看答案和解析>>

同步练习册答案