精英家教网 > 初中数学 > 题目详情
18、正方形是特殊的平行四边形,请写出一条正方形具有而平行四边形不具有的性质:
一组邻边相等(答案不唯一)
分析:根据正方形的性质可选一条正方形具有而平行四边形不具有的性质.此题答案不唯一.
解答:解:根据正方形的性质可知,正方形具有而平行四边形不具有的性质有:(1)一组邻边相;(2)有一个角是直角;(3)对角线相等;(4)对角线互相垂直;(5)一条对角线平分一组对角.(任写一条即可)
点评:本题要熟记正方形与平行四边形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、操作与探究:
(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,是点A与点C重合,DE为折痕.试证明△CBE等腰三角形;
(2)再将图①中的△CBE沿对称轴EF折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;
(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;
(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形?

查看答案和解析>>

科目:初中数学 来源: 题型:

四巧板也叫”T字之谜”,是一种类似七巧板的智力玩具,其中有大小不同的直角梯形各一块,等腰直角三角形一块,凹五边形一块.图1中所示的是一种特殊的四角板,它每块的顶点都落在小正方形的格点上.
(1)请你通过平移、翻折、旋转将这四块拼块在图2中无缝隙、不重叠地拼成两个形状笔筒的特殊四边形(长方形、平行四边形、梯形),要求:拼每个四边形时,四块拼块都用上且各自只能使用一次;
(2)这套特殊的四巧板中,四个拼块的面积之和为
42
42

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 北师大九年级版 2009-2010学年 第7期 总第163期 北师大版 题型:022

由于矩形、菱形、正方形都是平行四边形,故都具有________的性质,但它们作为一种特殊的平行四边形,又具有各自的特征:

(1)矩形:对边________,四个角________,两条对角线________;

(2)菱形:对边平行,四条边________,对角________,两条对角线________,每条对角线________;

(3)正方形:对边平行,四边________,四个角________,两条对角线________,每条对角线________.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

操作与探究:
(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,是点A与点C重合,DE为折痕.试证明△CBE等腰三角形;
(2)再将图①中的△CBE沿对称轴EF折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;
(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;
(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形?

查看答案和解析>>

科目:初中数学 来源:2006年江苏省连云港市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•连云港)操作与探究:
(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,是点A与点C重合,DE为折痕.试证明△CBE等腰三角形;
(2)再将图①中的△CBE沿对称轴EF折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;
(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;
(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形?

查看答案和解析>>

同步练习册答案