精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?
(1)点B的坐标为(0,2);(2)DE=4;(3)m的值为8或-8..

试题分析:(1)将m=2代入原式,得到二次函数的顶点式,据此即可求出B点的坐标;
(2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;
(3)①根据点A和点B的坐标,得到,将代入,即可求出二次函数的表达式;
②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答.
试题解析:(1)当m=2时,y=(x-2)2+1,
把x=0代入y=(x-2)2+1,得:y=2,
∴点B的坐标为(0,2).
(2)延长EA,交y轴于点F,
∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,
∴△AFC≌△AED,
∴AF=AE,
∵点A(m,-m2+m),点B(0,m),
∴AF=AE=|m|,BF=m-(-m2+m)=m2
∵∠ABF=90°-∠BAF=∠DAE,∠AFB=∠DEA=90°,
∴△ABF∽△DAE,

即:
∴DE=4.
(3)①∵点A的坐标为(m,-m2+m),
∴点D的坐标为(2m,-m2+m+4),
∴x=2m,y=-m2+m+4,
∴y=-•()2++4,
∴所求函数的解析式为:y=-x2++4,
②作PQ⊥DE于点Q,则△DPQ≌△BAF,

(Ⅰ)当四边形ABDP为平行四边形时(如图1),
点P的横坐标为3m,点P的纵坐标为:(-m2+m+4)-(m2)=-m2+m+4,
把P(3m,-m2+m+4)的坐标代入y=-x2++4得:-m2+m+4=-×(3m)2+×(3m)+4,
解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.
(Ⅱ)当四边形ABPD为平行四边形时(如图2),
点P的横坐标为m,点P的纵坐标为:(-m2+m+4)+(m2)=m+4,
把P(m,m+4)的坐标代入y=-x2++4得:
m+4=-m2+m+4,
解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=-8,
综上所述:m的值为8或-8.
考点:二次函数综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

反比例函数的图象在(   )
A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数的图像与一次函数的图像交于点A(m,2),点B(-2, n ),一次函数图像与y轴的交点为C.求△AOC的面积。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

反比例函数,当时,x的取值范围为                   .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若点A(-2,)、B(-1,)、C(1,)在反比例函数的图像上,则(   )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知反比例函数的图象经过点(a,b),则它的图象也一定经过(  )
A.(-a,-b)B.(a,-b)C.(-a,b)D.(0,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知反比例函数的图象经过点(2,5),则k=        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正比例函数与反比例函数相交于点E(,2),若,则的取值范围在数轴上表示正确的是【   】
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知反比例函数,当时,,则比例系数的值是     

查看答案和解析>>

同步练习册答案