(1)证明:∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵OD∥AB,OE∥AC,
∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°,
∴△ODE是等边三角形;
(2)BD=DE=EC,
其理由是:∵OB平分∠ABC,且∠ABC=60°,
∴∠ABO=∠OBD=30°,
∵OD∥AB,
∴∠BOD=∠ABO=30°,
∴∠DBO=∠DOB,
∴DB=DO,
同理,EC=EO,
∵DE=OD=OE,
∴BD=DE=EC;
(3)①连接AO,并延长交BC于点F,求证△ABF是直角三角形;
②若等边△ABC的边长为1,求BC边上的高长是多少.
分析:(1)根据平行线的性质及等边三角形的性质可得到△ODE是等边三角形;
(2)根据角平分线的性质及平行线的性质可得到∠DBO=∠DOB,根据等角对等边可得到DB=DO,同理可证明EC=EO,因为DE=OD=OE,所以BD=DE=EC;
(3)根据直角三角形及等边三角形的性质解答即可.
点评:本题考查的是等边三角形的性质,熟知等边三角形的三条边相等,三个内角都是60°是解答此题的关键.