精英家教网 > 初中数学 > 题目详情
命题:如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.
对上述命题证明如下:
∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,BO=AO.
又∵AG⊥EB,
∴∠1+∠3=90°=∠2+∠3.
∴∠1=∠2
∴Rt△BOE≌Rt△AOF.
∴OE=OF
问题:对上述命题,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,其它条件不变(如图2),则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明现由.
OE=OF.
理由如下:∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,BO=AO,
又∵AG⊥EB,
∴∠OAF+∠OEB=90°,
∠OEB+∠OBE=90°,
∴∠OBE=∠OAF,
在△AOF和△BOE中,
∠OBE=∠OAF
BO=AO
∠AOF=∠BOE=90°

∴△AOF≌△BOE(ASA),
∴OE=OF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在等腰梯形ABCD中,BCAD,AB=DC,AD=5,DC=4,DEAB交BC于点E,且EC=3,则梯形ABCD的周长是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在数学活动课上,小明做了一个梯形纸板,测得一底边长为7cm,高为12cm,两腰长分别为15cm和20cm,则该梯形纸板的另一底边长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

以△ABC的AB、AC为边分别作正方形ADEB、ACGF,连接DC、BF:
(1)CD与BF相等吗?请说明理由.
(2)CD与BF互相垂直吗?请说明理由.
(3)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,ABCD与BEFG是并列放在一起的两个正方形.如果正方形ABCD的面积是9平方厘米,CG=2厘米,则正方形BEFG的面积是(  )
A.25平方厘米B.75平方厘米C.50平方厘米D.45平方厘米

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在直线l上依次摆放着7个正方形,已知斜放置的3个的面积分别是a、b、c,正放置的4个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4的值为(  )
A.a+b+cB.a+cC.a+2b+cD.a-b+c

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S四边形DHGE;④图中有8个等腰三角形.其中正确的共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.
(1)证明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长.

查看答案和解析>>

同步练习册答案