精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC中,∠BAC=60°,AB=2AC.点P在△ABC内,且PA=
3
,PB=5,PC=2,求△ABC的面积.
分析:首先构造△ABQ使得∠QAB=∠PAC,∠ABQ=∠ACP.根据相似三角形的性质,求得AQ、BQ的值.再根据角间的关系求得∠QAP=60°,进而得到△APQ为直角三角形、△BQP为直角三角形.再利用勾股定理求得AB2的长.利用正弦定理与三角形的面积计算公式求得△ABC的面积.
解答:精英家教网解:如图,作△ABQ,使得∠QAB=∠PAC,∠ABQ=∠ACP,则△ABQ∽△ACP.
∵AB=2AC,
∴△ABQ与△ACP相似比为2.
∴AQ=2AP=2
3
,BQ=2CP=4,
∠QAP=∠QAB+∠BAP=∠PAC+∠BAP=∠BAC=60°.
由AQ:AP=2:1知,∠APQ=90°,于是PQ=
3
AP=3,
∴BP2=25=BQ2+PQ2,从而∠BQP=90°,
过A点作AM∥PQ,延长BQ交AM于点M,
∴AM=PQ,MQ=AP,
∴AB2=AM2+(QM+BQ)2=PQ2+(AP+BQ)2=28+8
3

故S△ABC=
1
2
AB•ACsin60°=
3
8
AB2
=
6+7
3
2
=3+
7
3
2

故答案为:3+
7
3
2
点评:本题考查三角形面积的计算、勾股定理、相似三角形的判定与性质.解决本题的关键是构造△ABQ使得∠QAB=∠PAC,∠ABQ=∠ACP,根据相似三角形的性质及勾股定理求得AB2的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案