【题目】如图,在四边形ABCD中,对角线AC、BD交于点O,AB∥DC,AB=BC,BD平分∠ABC,过点C作CE⊥AB交AB的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若AB=2,BD=4,求OE的长.
【答案】(1)见解析;(2)4
【解析】
(1)由平行线性质和角平分线性质易证明,BC=CD,因为AB∥CD且AB=BC,即可证明.
(2)直角三角形斜边的中线是斜边的一半,所以OE=OA=OC,菱形角平分线相互垂直平分,用勾股定理即可算出OC的长.
(1)∵AB∥CD,
∴∠ABD=∠CDB,
∵BD平分∠ABC,
∴∠ABD=∠CBD
∴∠CDB=∠CBD,
∴BC=CD,且AB=BC
∴CD=AB,且AB∥CD
∴四边形ABCD是平行四边形,且AB=BC
∴四边形ABCD是菱形;
(2)∵四边形ABCD是菱形,
∴OA=OC,BD⊥AC,BO=DO=2
∵AO= ==4
∵CE⊥AB,AO=CO
∴EO=AO=CO=4.
科目:初中数学 来源: 题型:
【题目】某班举行跳绳比赛,赛后整理参赛学生的成绩,将学生成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完善.
请你根据统计图解答下列问题:
(1)参加比赛的学生共有______名;
(2)在扇影统计图中,m的值为_____,表示D等级的扇形的圆心角为____度;
(3)先决定从本次比赛获得B等级的学生中,选出2名去参加学校的游园活动,已知B等级学生中男生有2名,其他均为女生,请用列表法或画树状图法求出所选2名学生给好是一名男生一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆心在坐标原点的⊙O,与坐标轴的交点分别为A、B和C、D.弦CM交OA于P,连结AM,已知tan∠PCO=,PC、PM是方程x2﹣px+20=0的两根.
(1)求C点的坐标;
(2)写出直线CM的函数解析式;
(3)求△AMC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.
(1)求证:;
(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;
(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的__倍.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,直接写出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com