精英家教网 > 初中数学 > 题目详情
如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3);
(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上是否存在一点P,使得|PB-PC|的值最大?若存在,求出点P的坐标;
(3)如果点M是抛物线在第三象限的一动点;当M点运动到何处时,M点到AC的距离最大?求出此时的最大距离及M的坐标.
(1)抛物线y=(x+1)2+k的对称轴为直线x=-1,
把点C(0,-3)代入抛物线得,(0+1)2+k=-3,
解得k=-4;

(2)令y=0,则(x+1)2-4=0,
解得x1=-3,x2=1,
∴点A(-3,0),B(1,0),
由三角形的三边性质,|PB-PC|<BC,
∴当点P、C、B在同一直线上时,|PB-PC|的值最大,
此时,设直线BC的解析式为y=kx+b(k≠0),
k+b=0
b=-3

解得
k=3
b=-3

∴直线BC的解析式为y=3x-3,
当x=-1时,y=3×(-1)-3=-6,
∴抛物线对称轴上存在点P(-1,-6),使得|PB-PC|的值最大;

(3)设直线AC的解析式为y=mx+n(m≠0),
-3m+n=0
n=-3

解得
m=-1
n=-3

∴直线AC的解析式为y=-x-3,
过点M的直线与直线AC平行且与抛物线只有一个交点时距离最大,
此时,过点M的直线解析式设为y=-x+b,
联立
y=(x+1)2-4
y=-x+b

消掉y得,x2+3x-3-b=0,
△=32-4×1×(-3-b)=0,
解得b=-
21
4

过点M的直线解析式为,y=-x-
21
4

此时,x1=x2=-
3
2

y1=y2=-
15
4

∴点M的坐标为(-
3
2
,-
15
4
),
设过点M的直线与x轴的交点为D,
则由-x-
21
4
=0,得x=-
21
4

∴AD=-3-(-
21
4
)=
9
4

∵A(-3,0),C(0,-3),
∴OA=OC,
∴△AOC是等腰直角三角形,
∴∠OAC=45°,
∵MDAC,
∴∠ODM=∠OAC=45°,
∴直线MD与AC之间的距离=
9
4
×
2
2
=
9
2
8

即M点到AC的距离最大值为
9
2
8
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:AC是⊙O的直径,点A、B、C、O在⊙O1上,OA=2.建立如图所示的直角坐标系.∠ACO=∠ACB=60度.
(1)求点B关于x轴对称的点D的坐标;
(2)求经过三点A、B、O的二次函数的解析式;
(3)该抛物线上是否存在点P,使四边形PABO为梯形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx的图象开口向下,与x轴的一个交点为B,顶点A在直线y=x上,O为坐标原点.
(1)证明:△AOB是等腰直角三角形;
(2)若△AOB的外接圆C的半径为1,求该二次函数的解析式;
(3)对题(2)中所求出的二次函数,在其图象上是否存在点P(点P与点A不重合),使得△POC是以PC为腰的等腰三角形,若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=x+8交x轴于A点,交y轴于B点,过A、0两点的抛物线y=ax2+bx(a<O)的顶点C在直线AB上,以C为圆心,CA的长为半径作⊙C.
(1)求抛物线的对称轴、顶点坐标及解析式;
(2)将⊙C沿x轴翻折后,得到⊙C′,求证:直线AC是⊙C′的切线;
(3)若M点是⊙C的优弧
ABO
(不与0、A重合)上的一个动点,P是抛物线上的点,且∠POA=∠AM0,求满足条件的P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线过点A(-1,0),B(0,6),对称轴为直线x=1
(1)求抛物线的解析式;
(2)画出抛物线的草图;
(3)根据图象回答:当x取何值时,y>0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象过(0,3),(3,0),且对称轴为直线x=1.
(1)求这个二次函数的图象的解析式;
(2)指出二次函数图象的顶点坐标;
(3)利用草图分析,当函数值y>0时,x的取值范围是多少.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象如图所示,根据图中的数据,
(1)求二次函数的解析式;
(2)设此二次函数的顶点为P,求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.
(1)求y关于x的函数关系式;
(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;
(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动时的速度都是1cm/s.而当点P到达点A时,点Q正好到达点C.设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm2)(如图2).分别以x,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.
(1)分别求出梯形中BA,AD的长度;
(2)写出图3中M,N两点的坐标;
(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在答题卷的图4(放大了的图3)中补全整个运动中y关于t的函数关系的大致图象.

查看答案和解析>>

同步练习册答案