精英家教网 > 初中数学 > 题目详情
已知:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、Dn,分别记△BD1E1、△BD2E2、△BD3E3、…、△BDnEn的面积为S1、S2、S3、…Sn.设△ABC的面积是1,则S1=    ,Sn=    (用含n的代数式表示).
【答案】分析:根据直角三角形的性质以及相似三角形的性质.再利用在△ACB中,D2为其重心可得D2E1=BE1,然后从中找出规律即可解答.
解答:解:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;
∴S1=S△D1E1A=S△ABC
根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=S△ABC
∴在△ACB中,D2为其重心,
又D1E1为三角形的中位线,∴D1E1∥BC,
∴△D2D1E1∽△CD2B,且相似比为1:2,
=
∴D2E1=BE1
∴D2E2=BC,CE2=AC,S2=S△ABC
∴D3E3=BC,CE3=AC,S3=S△ABC…;
∴Sn=S△ABC
故答案为:
点评:此题主要考查了相似三角形的判定与性质以及三角形中位线的性质和三角形的面积公式,解决本题的关键是据直角三角形的性质以及相似三角形的性质得到第一个三角形的面积与原三角形的面积的规律.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,过点B作BD∥AC,且BD=2AC,连接AD.试判断△ABD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,OD∥AB.求证:①ED是⊙O的切线;②2DE2=BE•OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)已知:如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连结DE.
(1)求证:DE与⊙O相切;
(2)连结OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代数式表示AE;
(3)求y与x之间的函数关系式,并求出x的取值范围;
(4)设四边形DECF的面积为S,求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜边AB上的高CD.

查看答案和解析>>

同步练习册答案