精英家教网 > 初中数学 > 题目详情
(2011•新华区一模)在矩形ABCD中,E是BC边上的动点(点E不与端点B、C重合),以AE为边,在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上,连接AC、FC,并过点F作FH⊥BC,交BC的延长线于点H.
(1)如图1,当AB=BC时;
①求证:矩形AEFG是正方形;
②猜想AC、FC的位置关系,并证明你的猜想.
(2)如图2,当AB≠BC时,上面的猜想还成立吗?若不成立,请说明理由;若成立,请给出证明.
分析:(1)①由已知条件可先判定四边形AEFG为矩形,再根据邻边相等(AB=BC)的矩形为正方形即可判定四边形AEFG为正方形;
②由①可知AE=EF,∠AEF=90°,再由已知条件判定△AEB≌△EFH,进而证明∠ACF=90°,即AC⊥FC;
(2)当AB≠BC时,AC⊥FC仍然成立,首先判定△AEB∽△EFH,再判定△CHF∽△ABC,利用相似三角形的性质:对应角相等即可证明AC⊥FC.
解答:解:(1)①证明:当AB=BC时,矩形ABCD是正方形.
∴AB=AD时,∠ABE=∠ADG=90°.
∵∠BAD=∠EAG=90°,
∴∠BAD-∠EAD=∠EAG-∠EAD,
∴∠BAE=∠DAG,
∴△ABE≌△ADG. 已知条件
∴AE=AG.
∴矩形AEFG是正方形.
②猜想:AC⊥FC. 
证明:∵矩形AEFG是正方形,
∴AE=EF,∠AEF=90°,
∴∠AEB+∠FEH=90°.
又∵∠AEB+∠EAB=90°,
∴∠EAB=∠FEH.
∵∠ABE=∠EHF=90°,
∴△AEB≌△EFH.
∴BE=HF,AB=EH.
∴BC=EH,∴BE=CH,
∴HF=CH.∴∠FCH=45°.
∵AC是正方形ABCD的对角线,
∴∠ACB=45°.
∴∠ACF=90°,
∴AC⊥FC.

(2)当AB≠BC时,AC⊥FC仍然成立. 
证明:由(1)可知:∠EAB=∠FEH,∠ABE=∠EHF,
∴△AEB∽△EFH,
BE
HF
=
AB
EH

易证△AGD≌△EFH.
∴AD=EH,DG=HF.
∵AD=BC,
∴BC=EH,
∴BE=CH.
CH
HF
=
AB
BC

CH
AB
=
HF
BC

∵∠CHF=∠ABC=90°,
∴△CHF∽△ABC,
∴∠HCF=∠BAC.  
∵∠BAC+∠ACB=90°,
∴∠HCF+∠ACB=90°,
∴∠ACF=90°,
∴AC⊥FC.
点评:本题考查了矩形的判定方法、正方形的判定方法以及相似三角形的判定和相似三角形的性质,题目综合性很强,难度不小.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•新华区一模)解方程组:
3x+2y=5             ①
5x-4y=1              ②

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•新华区一模)在图中的方格纸中,每个小方格都是边长为1个单位长的正方形,△ABC的3个顶点都在格点上(每个小方格的顶点叫格点).
(1)画出△A1B1C1,使得△A1B1C1与ABC关于直线l对称;
(2)画出ABC绕点O顺时针旋转90°后的A2B2C2,并求点A旋转到A2所经过的路线长;
(3)A1B1C1与A2B2C2
轴对称
轴对称
.(填”中心对称“或”轴对称“)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•新华区一模)我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是
4
4

(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5

②在AB上取一点P,可设AP=
x
x
,BP=
y
y

x2+9
+
y2+25
的最小值即为线段
PC
PC
和线段
PD
PD
长度之和的最小值,最小值为
10
10

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•新华区一模)如图,在直角梯形ABCD中,∠A=90°,AD=4,CD=3,BC=5,点E从A点出发以每秒2个单位长的速度向B点运动,点F从C点同时出发,以每秒1个单位长的速度向D点运动.设运动时间为t秒,当一个动点到达终点时,另一个动点也随之停止运动,过点F作FH⊥AB于点P,连接BD交FP于点O,连接OE.
(1)底边AB=
6
6

(2)设△BOE的面积为S△BOE
①求S△BOE与时间t的函数关系式;
②当t为何值时,S△BOE=
16
S梯形ABCD
(3)是否存在点E,使得△BOE为直角三角形;若存在,求出t的值;若不存在,请说明理由;
(4)是否存在某一时刻,使得OE∥BC?若存在,直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案