分析 首先根据正五边形的性质得到AB=BC=CD,∠ABC=∠BCD=108度,然后利用三角形内角和定理得∠BAC=∠BCA=∠CBD=∠BDC=$\frac{180°-108°}{2}$=36°,最后利用三角形的外角的性质得到∠APB=∠DBC+∠ACB=72°.
解答 解:∵五边形ABCDE为正五边形,
∴AB=BC=CD,∠ABC=∠BCD=108度,
∴∠BAC=∠BCA=∠CBD=∠BDC=$\frac{180°-108°}{2}$=36°,
∴∠APB=∠DBC+∠ACB=72°,
故答案为:72°.
点评 本题考查了正多边形和圆的知识,题目中还用到了三角形的外角的性质及正多边形的性质等,比较简单.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com