精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=

(1)求抛物线的解析式;
(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.

【答案】
(1)

解:设抛物线的解析式

把A(2,0)、C(0,3)代入得:

解得:


(2)

解:由y=0得

∴x1=2,x2=﹣3

∴B(﹣3,0)

①CM=BM时

∵BO=CO=3 即△BOC是等腰直角三角形

∴当M点在原点O时,△MBC是等腰三角形

∴M点坐标(0,0)

②如图所示:当BC=BM时

在Rt△BOC中,BO=CO=3,

由勾股定理得BC=

∴BC=

∴BM=

∴M点坐标(

综上所述:M点坐标为:M1 ,M2(0,0).


【解析】(1)根据抛物线的对称轴得到抛物线的顶点式,然后代入已知的两点理由待定系数法求解即可;(2)首先求得点B的坐标,然后分CM=BM时和BC=BM时两种情况根据等腰三角形的性质求得点M的坐标即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)在如图所示的数轴上,把数﹣2 42.5表示出来,并用将它们连接起来;

(2)假如在原点处放立一挡板(厚度不计),有甲、乙两个小球(忽略球的大小,可看作一点),小球甲从表示数﹣2的点处出发,以1个单位长度/秒的速度沿数轴向左运动;同时小球乙从表示数4的点处出发,以2个单位长度/秒的速度沿数轴向左运动,在碰到挡板后即刻按原来的速度向相反的方向运动,设运动的时间为t(秒).

请从A,B两题中任选一题作答.

A.当t=3时,求甲、乙两小球之间的距离.

B.用含t的代数式表示甲、乙两小球之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索新知:

如图1,射线OC的内部,图中共有3个角:,若其中有一个角的度数是另一个角度数的两倍,则称射线OC的“巧分线”.

(1)一个角的平分线______这个角的“巧分线”;填“是”或“不是”

(2)如图2,若,且射线PQ的“巧分线”,则______用含的代数式表示出所有可能的结果

深入研究:

如图2,若,且射线PQ绕点PPN位置开始,以每秒的速度逆时针旋转,当PQPN时停止旋转,旋转的时间为t秒.

(3)当t为何值时,射线PM的“巧分线”;

(4)若射线PM同时绕点P以每秒的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ的“巧分线”时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xoy中,点A、B的坐标分别是A(-1,0),B(3,0),将线段AB向上平移2个单位,再向右平移1个单位,得到线段DC,点A、B的对应点分别是D、C,连接AD、BC.

(1)直接写出点C,D的坐标;

(2)求四边形ABCD的面积;

(3)点P为线段BC上任意一点(与点B、C不重合),连接PD,PO.求证:∠CDP+∠BOP=∠OPD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某科学技术协会为倡导青少年主动进行研究性学习,积极研究身边的科学问题,组织了以“体验、创新、成长”为主题的青少年科技创大赛,在层层选拔的基础上,所有推荐参赛学生分别获得了一、二、三等奖和纪念奖,工作人员根据获奖情况绘制成如图所示的两幅不完整的统计图,根据图中所给出的信息解答下列问题:
(1)这次大赛获得三等奖的学生有多少人?
(2)请将条形统计图补充完整;
(3)扇形统计图中,表示三等奖扇形的圆心角是多少度?
(4)若给所有推荐参赛学生每人发一张相同的卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出写有一等奖学生名字卡片的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x1x2是一元二次方程2x2﹣7x+5=0的两根利用一元二次方程根与系数的关系求下列各式的值

1x12x2+x1x22; (2)(x1x22

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.

(1)求一次函数,反比例函数的解析式;
(2)求证:点C为线段AP的中点;
(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点EBC上一点,连接DE,把DEC沿DE折叠得到DEF,延长EFABG,连接DG

(1)求EDG的度数.

(2)如图2,EBC的中点,连接BF

求证:BFDE

若正方形边长为12,求线段AG的长.

查看答案和解析>>

同步练习册答案