精英家教网 > 初中数学 > 题目详情

(2011•福州)如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、AC边相切于D、E两点,连接OD.已知BD=2,AD=3.
求:(1)tanC;
(2)图中两部分阴影面积的和.

解:(1)连接OE,
∵AB、AC分别切⊙O于D、E两点,
∴∠ADO=∠AEO=90°,
又∵∠A=90°,
∴四边形ADOE是矩形,
∵OD=OE,
∴四边形ADOE是正方形,
∴OD∥AC,OD=AD=3,
∴∠BOD=∠C,
∴在Rt△BOD中,

答:tanC=
(2)解:如图,设⊙O与BC交于M、N两点,
由(1)得:四边形ADOE是正方形,
∴∠DOE=90°,
∴∠COE+∠BOD=90°,
∵在Rt△EOC中,,OE=3,

∴S扇形DOM+S扇形EON=S扇形DOE=
∴S阴影=SBOD+SCOE﹣(S扇形DOM+S扇形EON)=
答:图中两部分阴影面积的和为

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•福州)如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、AC边相切于D、E两点,连接OD.已知BD=2,AD=3.
求:(1)tanC;
(2)图中两部分阴影面积的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•福州)如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)将线段AB绕点B逆时针旋转90°,得到线段BC,请在答题卡指定位置画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x的增大而  (填“增大”或“减小”).

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(青海西宁卷)数学 题型:解答题

(2011•福州)如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)将线段AB绕点B逆时针旋转90°,得到线段BC,请在答题卡指定位置画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x的增大而  (填“增大”或“减小”).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•福州)如图是我们学过的反比例函数图象,它的函数解析式可能是(  )
A.y=x2B.
C.D.

查看答案和解析>>

同步练习册答案