精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2-x+c经过点Q(-2,
32
),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、精英家教网B两点,如图.
(1)求抛物线的解析式;
(2)求A、B两点的坐标;
(3)设PB于y轴交于C点,求△ABC的面积.
分析:(1)横坐标为-1,那么-
b
2a
=-1,再把点Q坐标代入即可.
(2)与x轴的交点,此时,函数值y=0,可化为一元二次方程求解.
(3)易求得AB之间的距离,可设出一次函数的解析式,把P、B坐标代入即可求得过P、B的解析式,与y轴的交点就是OC的长.
解答:解:(1)由题意得
3
2
=a(-2)2-(-2)+c
-
-1
2a
=-1

解得a=-
1
2
,c=
3
2

∴抛物线的解析式为y=-
1
2
x2-x+
3
2


(2)把y=0代入y=-
1
2
x2-x+
3
2
得:-
1
2
x2-x+
3
2
=0,
整理得x2+2x-3=0.
变形为(x+3)(x-1)=0,
解得x1=-3,x2=1.
∵抛物线与x轴的交点A点在x轴负半轴,B点在x轴正半轴,
∴A(-3,0),B(1,0).

(3)将x=-l代入y=-
1
2
x2-x+
3
2
中,
得y=2,即P(-1,2).
设直线PB的解析式为y=kx+b,
将P(-1,2),B(1,0)代入得:
2=-k+b
0=k+b

解得:k=-1,b=1.
即直线PB的解析式为y=-x+1.
把x=0代入y=-x+1中,则y=1,即OC=1.
又∵AB=AO+OB=1+3=4,
∴S△ABC=
1
2
×AB×OC=
1
2
×4×1=2,即△ABC的面积为2.
点评:图象与x轴的交点的纵坐标为0;二次函数的顶点坐标为(-
b
2a
4ac-b2
4a
);数轴上两点间的距离=数轴右边的数减去左边的数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案