精英家教网 > 初中数学 > 题目详情
(本题满分9分)如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).
小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段
圆弧,即,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧
与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之
和.
小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA
边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到
了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形
纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她
提出了如下问题:
问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并
求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC
按上述方法经过5次旋转,求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是
?
请你解答上述两个问题.
解:问题①:如图,正方形纸片经过3次旋转,顶点O运动所形成的图形是三段圆弧
所以顶点O在此运动过程中经过的路程为
顶点 O在此运动过程中所形成的图形与直线围成图形的面积为
正方形纸片经过5次旋转,顶点O运动经过的路程为:
问题②:∵ 正方形纸片每经过4次旋转,顶点O运动经过的路程均为:
,而是正方形纸片第4+1次旋转,顶点O运动经过的路程。
∴正方形纸片OABC按上述方法经过81次旋转,顶点O经过的路程是
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

(2011•温州)如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是(  )
A.3B.4
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(11·肇庆)(本小题满分10分)己知:如图10.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC干点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.
(1)求证:∠DAC=∠DBA
(2)求证:P处线段AF的中点

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一条公路弯道处是一段圆弧,点O是这条弧所在圆的圆心,点C是的中点,OC与AB相交于点D。已知AB=120m,CD=20m,那么这段弯道的半径为(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(11·钦州)已知⊙O1和⊙O2的半径分别为2和5,如果两圆的位置关系为外离,那么圆心距O1O2的取值范围在数轴上表示正确的是

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•德州)●观察计算
当a=5,b=3时,的大小关系是
当a=4,b=4时,的大小关系是=
●探究证明
如图所示,△ABC为圆O的内接三角形,AB为直径,过C作CD⊥AB于D,设AD=a,BD=b.
(1)分别用a,b表示线段OC,CD;
(2)探求OC与CD表达式之间存在的关系(用含a,b的式子表示).
●归纳结论
根据上面的观察计算、探究证明,你能得出的大小关系是:
●实践应用
要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•福州)如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、AC边相切于D、E两点,连接OD.已知BD=2,AD=3.
求:(1)tanC;
(2)图中两部分阴影面积的和.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011贵州安顺,26,12分)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点DDEAC,垂足为点E
⑴求证:点DAB的中点;
⑵判断DE与⊙O的位置关系,并证明你的结论;
⑶若⊙O的直径为18,cosB =,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点DAC上一点,点O为边AB上一点,ADDO.以O为圆心,OD长为半

径作圆,交AC于另一点E,交AB于点FG,连接EF.若
BAC=22°,则∠EFG_  ▲  

查看答案和解析>>

同步练习册答案