精英家教网 > 初中数学 > 题目详情
精英家教网如图,?ABCD中,E为AD的中点.已知△DEF的面积为1,则?ABCD的面积为(  )
A、9B、12C、15D、18
分析:由于四边形ABCD是平行四边形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△DEF∽△BCF,再根据E是AD中点,易求出相似比,从而可求△BCF的面积,再利用△BCF与△DEF是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求△DCF的面积,进而可求?ABCD的面积.
解答:解:如图所示,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴△DEF∽△BCF,
∴S△DEF:S△BCF=(
DE
BC
2
又∵E是AD中点,
∴DE=
1
2
AD=
1
2
BC,
∴DE:BC=DF:BF=1:2,
∴S△DEF:S△BCF=1:4,
∴S△BCF=4,
又∵DF:BF=1:2,
∴S△DCF=2,
∴S?ABCD=2(S△DCF+S△BCF)=12.
故选B.
点评:本题考查了平行四边形的性质、平行线分线段成比例定理的推论、相似三角形的判定和性质.解题的关键是知道相似三角形的面积比等于相似比的平方、同高两个三角形面积比等于底之比,先求出△BCF的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,?ABCD中,O为AC、BD的中点,则图中全等的三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,?ABCD中,AB⊥AC,AB=1,BC=
5
,对角线AC,BD相交于O点,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F,下列说法不正确的是(  )
A、当旋转角为90°时,四边形ABEF一定为平行四边形
B、在旋转的过程中,线段AF与EC总相等
C、当旋转角为45°时,四边形BEDF一定为菱形
D、当旋转角为45°时,四边形ABEF一定为等腰梯形

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,?ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=
12
DC.  若△DEF的面积为2,则?ABCD的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,?ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.
求证:AB=AF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•浙江)如图,?ABCD中,对角线AC和BD交于点O,过O作OE∥BC交DC于点E,若OE=5cm,则AD的长为
10
10
cm.

查看答案和解析>>

同步练习册答案