精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,一次函数y=x+m (m为常数)的图像与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B.

(1)求m的值及抛物线的函数表达式;
(2)若P是抛物线对称轴上一动点,△ACP周长最小时,求出P的坐标;
(3)是否存在抛物在线一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若不存在,请说明理由;
(4)在(2)的条件下过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问是否为定值,如果是,请直接写出结果,如果不是请说明理由.

【答案】解:(1)∵y=x+m经过点(-3,0),
∴0=+m,解得m=
∴直线解析式为y=x+,C(0,).
∵抛物线y=ax2+bx+c对称轴为x=1,且与x轴交于A(-3,0),∴另一交点为B(5,0),
设抛物线解析式为y=a(x+3)(x-5),
∵抛物线经过C(0,),
=a3(-5),解得a=
∴抛物线解析式为y=x2+x+
(2)要使△ACP的周长最小,只需AP+CP最小即可.如图2,

连接BC交x=1于P点,因为点A、B关于x=1对称,根据轴对称性质以及两点之间线段最短,可知此时AP+CP最小(AP+CP最小值为线段BC的长度).
∵B(5,0),C(0,),
∴直线BC解析式为y=x+
∵xP=1,∴yP=3,即P(1,3).
(3) (3)存在 设Q(x, x2+x+)
①若C为直角顶点, 则由△ACO相似于△CQE,得x=5.2
②若A为直角顶点,则由△ACO相似于△AQE,得x=8.2
∴Q的横坐标为5.2 ,7.2
(4)令经过点P(1,3)的直线为y=kx+b,则k+b=3,即b=3-k,
则直线的解析式是:y=kx+3-k,
∵y=kx+3-k,y=x2+x+
联立化简得:x2+(4k-2)x-4k-3=0,
∴x1+x2=2-4k,x1x2=-4k-3.
∵y1=kx1+3-k,y2=kx2+3-k,∴y1-y2=k(x1-x2).
根据两点间距离公式得到:==
==4(1+k2).
==

同理
=
=
=4(1+k2).
∴M1PM2P=M1M2
=1为定值.
【解析】
(1)首先求得m的值和直线的解析式,根据抛物线对称性得到B点坐标,根据A、B点坐标利用交点式求得抛物线的解析式;
(2)确定何时△ACP的周长最小.利用轴对称的性质和两点之间线段最短的原理解决;确定P点坐标P(1,3),从而直线M1M2的解析式可以表示为y=kx+3-k;
(3)存在, 设Q(x,x2+x+)①若C为直角顶点, 则由△ACO相似于△CQE,得x=5.2,②若A为直角顶点,则由△ACO相似于△AQE,得x=8.2从而求出Q点坐标.
(4)利用两点间的距离公式,分别求得线段M1M2、M1P和M2P的长度,相互比较即可得到结论:=1为定值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,DB∥AC,且DB= AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,的垂直平分线交于点,交的延长线于点

1)若,则 度;

2)如果),其余条件不变,求的度数;

3)补全规律:等腰三角形一腰的垂直平分线与 相交所成的锐角等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线为边作正方形,再以正方形的对角线作正方形,…,依此规律,则点的坐标是( )

A. (-8,0) B. (0,8)

C. (0,8 D. (0,16)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】心理学家研究发现,一般情况下,一节课分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为 理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数随时间(分钟)的变化规律如图所示(其中都为线段)

1)分别求出线段的函数解析式;

2)开始上课后第分钟时与第分钟时相比较,何时学生的注意力更集中?

3)一道数学竞赛题,需要讲分钟,为了效果较好,要求学生的注意力指标数最低达到那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上
(1)求抛物线的解析式;
(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;

(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒
个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.

(1)求该二次函数的解析式;
(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;
(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2 , 求S1﹣S2的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平面直角坐标系中有一点

轴的距离为时,求出点的坐标;

的坐标为,且轴,求出点的坐标.

查看答案和解析>>

同步练习册答案