精英家教网 > 初中数学 > 题目详情
如图,已知在⊙O中,AB为弦,C、D两点在AB上,且AC=BD,仔细观察后回答:图中共有几个等腰三角形?把它们写出来,并说明你的理由.
分析:过O作OE⊥AB于E,根据等腰三角形性质或垂径定理得出AE=BE,推出CE=DE,根据线段垂直平分线得出OC=OD,根据等腰三角形判定推出即可.
解答:
解:图中有2个等腰三角形,是△OAB,△OCD,
理由是:过O作OE⊥AB于E,
∵OA=OB,
∴AE=BE,
∵AC=BD,
∴CE=ED,
∵OE⊥CD,
∴OC=OD,
即△OAB和△OCD是等腰三角形.
点评:本题考查了垂径定理,等腰三角形的性质和判定,线段垂直平分线性质的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)若∠A=90°,求证:四边形DFAE是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在⊙O中,CD是直径,弦AB⊥CD,M是垂足,E为MA上的一点,连接C、E两点并延长交⊙O于F,过F精英家教网作⊙O的切线交BA的延长线于点P.
求证:CE•EF=2PE•EM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•普宁市一模)如图,已知在?ABCD中,E、F是对角线BD延长线上的两点,且∠BCE=∠DAF,求证:△ECD≌△FAB.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,AB的垂直平分线DE交AC于点E,CE的垂直平分线正好经过点B,与AC相交于点F,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8m,则DE=
2
2
cm.

查看答案和解析>>

同步练习册答案