精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,OAOBABx轴于点C,点A,1)在反比例函数y的图象上.

(1)求反比例函数y的表达式;

(2)在x轴上是否存在一点P,使得SAOPSAOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.

【答案】(1)y;(2)(﹣2,0)或(2,0)

【解析】

(1)把A的坐标代入反比例函数的表达式即可求出答案

(2)求出∠A=60°,∠B=30°,求出线段OAOB求出△AOB的面积根据已知SAOPSAOB求出OP即可求出答案

1)把A,1)代入反比例函数yk=1所以反比例函数的表达式为y

(2)∵A,1),OAABABx轴于C,∴OCAC=1,OA2.

∵tanA,∴∠A=60°.

OAOB,∴∠AOB=90°,∴∠B=30°,∴OB=2OC=2,∴SAOBOAOB2×2

SAOPSAOB,∴OP×AC

AC=1,∴OP=2∴点P的坐标为(﹣2,0)或(2,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣2kx+k2﹣2=0.设x1x2是方程的根,且x12﹣2kx1+2x1x2=5,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形OABC的边OA在x轴上,点B的坐标为(8,4),P是对角线OB上的一个动点,点D(0,1)在y轴上,当PC+PD最短时,最短距离是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,cosABC=,sinACB=,AC=2,分别以AB,AC为边向△ABC形外作正方形ABGF和正方形ACDE,连接EF,点MEF的中点,连接AM,则AM的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一袋装有编号为1,2,3的三个形状、大小、材质等相同的小球,从袋中随意摸出1个球,记事件A摸出的球编号为奇数,随意抛掷一个之地均匀正方体骰子,六个面上分别写有1﹣66个整数,记事件B向上一面的数字是3的整数倍,请你判断等式“P(A)=2P(B)”是否成立,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中ABBC,EFBCAEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察与思考:阅读下列材料,并解决后面的问题

在锐角△ABC中,∠A、∠B、∠C的对边分别是abc,过AADBCD(如图(1)),则sinB=,sinC=,即ADcsinBADbsinC,于是csinBbsinC,即,同理有:所以

即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.

根据上述材料,完成下列各题.

(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A   AC   

(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,2.449)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向, B位于南偏西30°方向.

1)线段BQPQ是否相等?请说明理由;

2)求AB间的距离(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】经市场调研发现:某品牌童装平均每天可售出 20 件,每件盈利 40元.在每件降价幅度不超过 18 元的情况下,若每件童装降价 1 元,则每天可多售出 2 件,设降价 x 元.

(1)降价 x 元后每件童装盈利是多少元每天销售量是多少件;

(2)要想每天销售这种童装盈利 1200 元,那么每件童装应降价多少元?

(3)每天能盈利 1800 元吗?如果能,每件童装应降价多少元?如果不能,请说明理由.

查看答案和解析>>

同步练习册答案