精英家教网 > 初中数学 > 题目详情

如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为  米.


         解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,

抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),

通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),

到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,

当水面下降1米,通过抛物线在图上的观察可转化为:

当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,

可以通过把y=﹣1代入抛物线解析式得出:

﹣1=﹣0.5x2+2,

解得:x=

所以水面宽度增加到米,


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,直线a、b相交于点O,∠1=50°,则∠2=  度.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是(  )

A.                B.C.   D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系xOy中,点A坐标为(8,0),点B在y轴的正半轴上,且cot∠OAB=,抛物线y=﹣x2+bx+c经过A、B两点.

(1)求b、c的值;

(2)过点B作CB⊥OB,交这个抛物线于点C,以点C为圆心,CB为半径长的圆记作圆C,以点A为圆心,r为半径长的圆记作圆A.若圆C与圆A外切,求r的值;

(3)若点D在这个抛物线上,△AOB的面积是△OBD面积的8倍,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:


二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为(  )

A.  ﹣3           B﹣1             C.2             D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:

(1)求抛物线的解析式;

(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.

注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣).

查看答案和解析>>

科目:初中数学 来源: 题型:


某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:

(1)求y与x之间的函数关系式,并写出自变量x的取值范围;

(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?

(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:


点A(m﹣1,3﹣m)在第四象限,则m的取值范围是 

查看答案和解析>>

科目:初中数学 来源: 题型:


函数y=+中,自变量x的取值范围是                       

查看答案和解析>>

同步练习册答案