【题目】我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中的系数等等.
(1)根据上面的规律,则(a+b)5的展开式= .
(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1= .
【答案】
(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
(2)1
【解析】解:(1.)∵(a+b)1=a+b, (a+b)2=a2+2ab+b2 ,
(a+b)3=a3+3a2b+3ab2+b3 ,
(a+b)4=a4+4a3b+6a2b2+4ab3+b4 ,
∴(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 ,
所以答案是:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;
(2.)25﹣5×24+10×23﹣10×22+5×2﹣1=(2﹣1)5=15=1(根据(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5的逆运用得出的),所以答案是:1.
【考点精析】认真审题,首先需要了解完全平方公式(首平方又末平方,二倍首末在中央.和的平方加再加,先减后加差平方).
科目:初中数学 来源: 题型:
【题目】已知,点E、F分别在直线AB,CD上,点P在AB、CD之间,连结EP、FP,如图1,过FP上的点G作GH∥EP,交CD于点H,且∠1=∠2.
(1)求证:AB∥CD;
(2)如图2,将射线FC沿FP折叠,交PE于点J,若JK平分∠EJF,且JK∥AB,则∠BEP与∠EPF之间有何数量关系,并证明你的结论;
(3)如图3,将射线FC沿FP折叠,将射线EA沿EP折叠,折叠后的两射线交于点M,当EM⊥FM时,求∠EPF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】青岛“最美地铁线”连接崂山和即墨的地铁11号线全长约58km,数据58km用科学记数法可表示为( )m.
A. 0.58×105B. 58×104C. 5.8×104D. 5.8×105
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题是真命题的是( )
A. 同旁内角互补 B. 三角形的一个外角等于它的两个内角之和
C. 直角三角形两锐角互余 D. 三角形的一个外角大于内角
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学去年通过“废品回收”活动筹集资金用于资助贫困山区中、小学生共27名,其中资助一名中学生的学习费用需要x元,资助一名小学生的学习费用需要y元,各年级学生筹集资金的数额及用其恰好资助中、小学生人数的部分情况如下表:
年级 | 筹集资金数额 | 资助贫困中学 | 资助贫困小学生人数(名) |
七年级 | 5000 | 2 | 5 |
八年级 | 6000 | 3 | 5 |
九年级 | 8000 |
(1)求x,y的值;
(2)九年级学生筹集的资金数解决了其余贫困中、小学生的学习费用,求出九年级学生资助的贫困中、小学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】暑假期间,某学校计划用彩色的地面砖铺设教学楼门前一块矩形操场ABCD的地面.已知这个矩形操场地面的长为100m,宽为80m,图案设计如图所示:操场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,在实际铺设的过程总,阴影部分铺红色地面砖,其余部分铺灰色地面砖.
(1)如果操场上铺灰色地面砖的面积是铺红色地面砖面积的4倍,那么操场四角的每个小正方形边长是多少米?
(2)如果灰色地面砖的价格为每平方米30元,红色地面砖的价格为每平方米20元,学校现有15万元资金,问这些资金是否能购买所需的全部地面砖?如果能购买所学的全部地面砖,则剩余资金是多少元?如果不能购买所需的全部地面砖,教育局还应该至少给学校解决多少资金?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com