精英家教网 > 初中数学 > 题目详情
9.如图,在△ABC中,D,E两点分别在边AB,AC上,AB=8cm,AC=6cm,AD=3cm,要使△ADE与△ABC相似,则线段AE的长为4或$\frac{9}{4}$cm.

分析 根据两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似,△ADE与△ABC相似,由于题中没有指明对应边,故应该分两种情况讨论求解.

解答 解:①当△ADE∽△ABC时,有AD:AB=AE:AC,
∵AB=8,AC=6,AD=3,
∴AE=$\frac{9}{4}$;
②当△AED∽△ABC时,有AD:AE=AC:AB,
∵AB=8,AC=4,AD=3,
∴AE=4,
所以AE等于4或$\frac{9}{4}$.
故答案为:4或$\frac{9}{4}$.

点评 本题考查了相似三角形的判定和性质,同时考查学生对相似三角形的性质的掌握情况,注意分类讨论思想的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.方程组$\left\{\begin{array}{l}{x+y+z=10}\\{x+y=8}\\{x=y+z}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=5}\\{y=3}\\{z=2}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知,如图等边三角形ABC和正方形BDEC的边长均为2,⊙O经过点A,D,E三点.
求:⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在?ABCD中,AB=4,AD=7,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF的长是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.为了提高足球基本功,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.
(1)请用树状图列举出三次传球的所有可能情况;
(2)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,在平面直角坐标系中,O为坐标原点,正方形ABCD的对角线AC落在x轴上,A(-1,0),C(7,0),连接OB,则∠BOC的正弦值为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,矩形ABCD的对角线AC、BD相交于点0,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为6,则cos∠BOE=$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知正方形ABCD,E为平面内任意一点,连结DE,将线段DE绕点D顺时针旋转90°得到DG,连结EC,AG.
(1)当点E在正方形ABCD内部时,
①依题意补全图形;
②判断AG与CE的数量关系与位置关系并写出证明思路.
(2)当点B,D,G在一条直线时,若AD=4,DG=$\sqrt{2}$,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.探究:如图1,四边形ABCD是矩形,E是CD中点,G是BC上一点,BG=CE,连接EG并延长交AB的延长线于点H,过点E作EH的垂线交AD于点F,求证:△BGH≌△DEF.
应用:如图2,四边形ABCD是菱形,∠D=60°,E、F分别是CD、AD上一点,以点E为旋转中心,将射线EF逆时针旋转120°,交BC于点G,交AB的延长线于点H,M是CD上一点,∠DFM=60°,FD=2cm,FE=3cm,BH=6cm,求HG的长度.

查看答案和解析>>

同步练习册答案