已知是正整数,则奇数可以用代数式来表示.
(1)分解因式: ;
(2)我们把所有”奇数的平方减去1”所得的数叫”白银数”,则所有”白银数”的最大公约数是多少?请简要说明理由.
科目:初中数学 来源: 题型:
已知直线AC: 与直线BC:相交于点C,分别交x轴于点A、B,P为x轴上的一点,设P(m,0),以点P为圆心作圆:
(1)若-4<m <6.当m=______时,⊙P同时与AC、BC相切;
(2)设⊙P的半径为3,当m=_______时,⊙P与直线AC、直线BC中的一条相切。
查看答案和解析>>
科目:初中数学 来源: 题型:
点A(-1,0)B(4,0)C(0,2)是平面直角坐标系上的三点。
① 如图1先过A、B、C作△ABC,然后在在轴上方作一个正方形D1E1F1G1,
使D1E1在AB上, F1、G1分别在BC、AC上
② 如图2先过A、B、C作圆⊙M,然后在轴上方作一个正方形D2E2F2G2,
使D2E2在轴上 ,F2、G2在圆上
③ 如图3先过A、B、C作抛物线,然后在轴上方作一个正方形D3E3F3G3,
使D3E3在轴上, F3、G3在抛物线上
请比较 正方形D1E1F1G1 , 正方形D2E2F2G2 , 正方形D3E3F3G3 的面积大小
查看答案和解析>>
科目:初中数学 来源: 题型:
数学活动﹣求重叠部分的面积
(1)问题情境:如图①,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点P与等边△ABC的内心O重合,已知OA=2,则图中重叠部分△PAB的面积为 .
(2)探究1:在(1)的条件下,将纸片绕P点旋转至如图②所示位置,纸片两边分别与AC,AB交于点E,F,图②中重叠部分的面积与图①重叠部分的面积是否相等?如果相等,请给予证明;如果不相等,请说明理由.
(3)探究2:如图③,若∠CAB=α(0°<α<90°),AD为∠CAB的角平分线,点P在射线AD上,且AP=2,以P为顶点的等腰三角形纸片(纸片足够大)与∠CAB的两边AC,AB分别交于点E、F,∠EPF=180°﹣α,求重叠部分的面积.(用α或的三角函数值表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com