如下图,线段AB=12cm,C是线段AB上任意一点,M,N分别是AC,BC的中点, MN的长为 cm.如果AM=4cm,BN的长为 cm。
科目:初中数学 来源:2009年黑龙江省哈尔滨市中考数学试题 题型:044
已知:△ABC的高AD所在直线与高BE所在直线相交于点F.
(1)如下图,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD;
(2)如下图,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是;
(3)在(2)的条件下,若AG=5,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这个角的两边分别交线段FG于M、N两点(如下图),连接CF,线段CF分别与线段BM、线段BN相交于P、Q两点,若NG=,求线段PQ的长.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年浙江省菁才中学八年级上学期期中考试数学试卷(带解析) 题型:解答题
如下图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段;请在图中画出AB=,CD=,EF=这样的线段.
查看答案和解析>>
科目:初中数学 来源:2011—2012学年安徽全椒八年级下第三次月考数学试卷(带解析) 题型:解答题
阅读下面材料,并解决问题:
(1)如下图1,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5则∠APB=______,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌_______这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知:如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.
查看答案和解析>>
科目:初中数学 来源:2013届浙江省八年级上学期期中考试数学试卷(解析版) 题型:解答题
如下图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段;请在图中画出AB=,CD=,EF=这样的线段.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com