精英家教网 > 初中数学 > 题目详情
(2012•百色)如图,Rt△OA1B1是由Rt△OAB绕点O顺时针方向旋转得到的,且A、O、B1三点共线.如果∠OAB=90°,∠AOB=30°,OA=
3
.则图中阴影部分的面积为
5
3
π-
3
2
5
3
π-
3
2
.(结果保留π)
分析:在直角△OAB中,利用三角函数即可求得AB、OA、OB的长度,求得△ABO的面积,扇形BOB′的面积,依据图中阴影部分的面积为:S扇形BOB′-S△OAB即可求解.
解答:解:∵Rt△OAB中∠OAB=90°,∠AOB=30°,OA=
3

∴AB=OA•tan∠AOB=
3
×
3
3
=1,OB=2,∠BOB′=180°-30°=150°,
∴S△OAB=
1
2
AB•OA=
1
2
×1×
3
=
3
2

S扇形BOB′=
150π×22
360
=
5
3
π,
则图中阴影部分的面积为
5
3
π-
3
2

故答案是:
5
3
π-
3
2
点评:本题考查了扇形的面积公式,理解图中阴影部分的面积为:S扇形BOB′-S△OAB是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•百色)如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.
(1)求抛物线的解析式;
(2)连接BE,求h为何值时,△BDE的面积最大;
(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•百色)如图,在矩形ABCD中,AB=6cm,BC=4cm.动点E从点B出发,沿着线路BC→CD→DA运动,在BC段的平均速度是1cm/s,在CD段的平均速度是2cm/s,在DA段的平均速度是4cm/s,到点A停止.设△ABE的面积为y(cm2),则y与点E的运动时间t(s)的函数关系图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•百色)如图,在平面直角坐标系中,等腰梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上,且A(-4,0),B(6,0),D(0,3).
(1)写出点C的坐标,并求出经过点C的反比例函数解析式和直线BC的解析式;
(2)若点E是BC的中点,请说明经过点C的反比例函数图象也经过点E.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•百色)如图,△ABC内接于⊙O,AB是直径,直线l是经过点C的切线,BD⊥l,垂足为D,且AC=8,sin∠ABC=
45

(1)求证:BC平分∠ABD;
(2)过点A作直线l的垂线,垂足为E(要求:用尺规作图,保留作图痕迹,不写作法、证明),并求出四边形ABDE的周长.

查看答案和解析>>

同步练习册答案