【题目】在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,的平分线交图形G于点D,连接AD,CD.
(1)求证:AD=CD;
(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.
【答案】依题意画出图形G为⊙O,如图所示,见解析;(1)证明见解析;(2)直线DE与图形G的公共点个数为1个.
【解析】
(1)根据线段垂直平分线的性质得出图形G为⊙O,再根据在同圆或等圆中相等的圆周角所对的弧相等得出;从而得出弦相等即可.
(2)先根据HL得出△CDF≌△CMF,得出DF=MF,从而得出BC为弦DM的垂直平分线,根据圆心角和圆周角之间的关系定理得出∠ABC=∠COD,再证得
DE为⊙O的切线即可
如图所示,依题意画出图形G为⊙O,如图所示
(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,
∴,∴AD=CD
(2)解:∵AD=CD,AD=CM,∴CD=CM.∵DF⊥BC,∴∠DFC=∠CFM=90°
在Rt△CDF和Rt△CMF中
,∴△CDF≌△CMF(HL),∴DF=MF,∴BC为弦DM的垂直平分线
∴BC为⊙O的直径,连接OD
∵∠COD=2∠CBD,∠ABC=2∠CBD,∴∠ABC=∠COD,∴OD∥BE.
又∵DE⊥BA,∴∠DEB=90°,∴∠ODE=90°,即OD⊥DE,∴DE为⊙O的切线.
∴直线DE与图形G的公共点个数为1个.
科目:初中数学 来源: 题型:
【题目】美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是直线l外一个定点,点A为直线l上一个定点,点P关于直线l的对称点记为P1,将直线l绕点A顺时针旋转30°得到直线l′,此时点P2与点P关于直线l′对称,则∠P1AP2等于( )
A.30°B.45°C.60°D.75°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200-2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.
(1)如图1,若AB=,BE=5,求AE的长;
(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,.动点从点出发,沿以每秒4个单位长度的速度向终点运动.过点(不与点、重合)作,交或于点,交或于点,以为边向右作正方形.设点的运动时间为秒.
(1)①_________________;
②当点在上时,用含的代数式直接表示线段的长.
(2)当点与点重合时,求的值;
(3)设正方形的周长为,求与之间的函数关系式;
(4)直接写出对角线所在的直线将正方形分成两部分图形的面积比为1:2时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像经过点A(-1,0),并与反比例函数()的图像交于B(m,4)
(1)求的值;
(2)以AB为一边,在AB的左侧作正方形,求C点坐标;
(3)将正方形沿着轴的正方向,向右平移n个单位长度,得到正方形,线段的中点为点,若点和点同时落在反比例函数的图像上,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,∠B=90o,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.
(1)求证:AC·AD=AB·AE;
(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com