【题目】在平面直角坐标系中,直线交轴于点,交轴于点,抛物线经过点,与直线交于点.
(1)求抛物线的解析式;
(2)如图,横坐标为的点在直线上方的抛物线上,过点作轴交直线于点,以为直径的圆交直线于另一点.当点在轴上时,求的周长;
(3)将绕坐标平面内的某一点按顺时针方向旋转,得到,点的对应点分别是.若的两个顶点恰好落在抛物线上,请直接写出点的坐标.
【答案】(1)抛物线的解析式为:y=﹣x2+x+1;
(2)△DEM的周长= ;
(3)点A1( , )或(﹣, ).
【解析】
试题分析:(1)利用待定系数法求抛物线的解析式;
(2)如图1,A与E重合,根据直线y=﹣x+1求得与x轴交点坐标可得OA的长,由勾股定理得AB的长,利用等角的三角函数得:sin∠ABO= ,cos∠ABO= ,则可得DE和DM的长,根据M的横坐标代入抛物线的解析式可得纵坐标,即ME的长,相加得△DEM的周长;
(3)由旋转可知:O1A1⊥x轴,O1B1⊥y轴,设点A1的横坐标为x,则点B1的横坐标为x+1,所以点O1,A1不可能同时落在抛物线上,分以下两种情况:
①如图2,当点O1,B1同时落在抛物线上时,根据点O1,B1的纵坐标相等列方程可得结论;
②如图3,当点A1,B1同时落在抛物线上时,根据点B1的纵坐标比点A1的纵坐标大 ,列方程可得结论.
试题解析:(1)∵直线y=﹣x+1交y轴于点B,∴B(0,1),
∵抛物线y=﹣x2+bx+c经过点B和点C(4,﹣2).∴ ,解得: ,
∴抛物线的解析式为:y=﹣x2+x+1;
(2)如图1,∵直线y=﹣x+1交x轴于点A,
当y=0时,﹣ x+1=0,x=,∴A(,0),∴OA=,
在Rt△AOB中,∵OB=1,∴AB= ,∴sin∠ABO=,cos∠ABO=,
∵ME∥x轴,
∴∠DEM=∠ABO,
∵以ME为直径的圆交直线BC于另一点D,
∴∠EDM=90°,
∴DE=MEcos∠DEM=ME,DM=MEsin∠DEM=ME,
当点E在x轴上时,E和A重合,则m=OA=,
当x=时,y=﹣ ×()2+×+1= ;∴ME=,
∴DE= = ,DM= =,
∴△DEM的周长=DE+DM+ME= = ;
(3)由旋转可知:O1A1⊥x轴,O1B1⊥y轴,设点A1的横坐标为x,则点B1的横坐标为x+1,
∵O1A1⊥x轴,
∴点O1,A1不可能同时落在抛物线上,分以下两种情况:
①如图2,当点O1,B1同时落在抛物线上时,
点O1,B1的纵坐标相等,
∴﹣x2+x+1=﹣(x+1)2+(x+1)+1,
解得:x= ,
此时点A1的坐标为( , ),
②如图3,当点A1,B1同时落在抛物线上时,
点B1的纵坐标比点A1的纵坐标大,
﹣x2+x+1+ =﹣(x+1)2+(x+1)+1,
解得:x=﹣,
此时A1(﹣, ),
综上所述,点A1( , )或(﹣, ).
科目:初中数学 来源: 题型:
【题目】下列命题中:正确的说法有
①两个全等三角形合在一起是一个轴对称图形;
②成轴对称的两个图形一定全等;
③直线l经过线段AB的中点,则l是线段AB的垂直平分线;
④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是( ).
A.中位数B.众数C.平均数D.方差
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:(8x3﹣12x2﹣4x)÷(﹣4x)=( )
A. ﹣2x2+3xB. ﹣2x2+3x+1C. ﹣2x2+3x﹣1D. 2x2+3x+1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义一个新运算,若i1=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,i8=1,…,则i2020=( )
A.﹣iB.iC.﹣1D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列不能进行平方差计算的是( )
A.(x+y)(﹣x﹣y)
B.(2a+b)(2a﹣b)
C.(﹣3x﹣y)(﹣y+3x)
D.(a2+b)(a2﹣b)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com