【题目】解方程:
(1)
(2)
(3)
【答案】(1)x=2;(2)x=12;(3)x=-17.
【解析】
(1)根据解一元一次方程的步骤求解即可;
(2)先去括号、再移项、合并同类项,系数化为1即可;
(3)先去分母,去括号、再移项、合并同类项,系数化为1即可.
(1)移项得,2x+x=1+5,
合并同类项,得3x=6,
系数化为1,得x=2;
(2)去括号得,6x+15=8x-6-3,
移项得,6x-8x=-6-3-15,
合并同类项,得-2x=-24,
系数化为1得,x=12;
(3)去分母,得3(x-1)-12=2(2x+1),
去括号得,3x-3-12=4x+2,
移项得,3x-4x=2+3+12,
合并同类项,-x=17,
系数化为1,x=-17.
科目:初中数学 来源: 题型:
【题目】如图,将一张直角三角形纸片沿斜边上的中线剪开,得到,再将沿方向平移到的位置,若从平移开始到点未到达点时,交于点,交于点,连结.
(1)试探究的形状,请说明理由;
(2)当四边形为菱形时,判断与是否全等,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:
(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;
(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b交x轴于点A(1,0),与双曲线y=-(x<0)交于点B(-1,a).
(1)求直线AB的解析式;
(2)若点B左侧一直线x=m与直线AB交于点C,与双曲线交于点D(C、D两点不重合),当BC=BD时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学问题:用边长相等的正三角形、正方形和正六边形能否进行平面图形的镶嵌?
问题探究:为了解决上述数学问题,我们采用分类讨论的思想方法去进行探究.
探究一:从正三角形、正方形和正六边形中任选一种图形,能否进行平面图形的镶嵌?
第一类:选正三角形.因为正三角形的每一个内角是60°,所以在镶嵌平面时,围绕某一点有6个正三角形的内角可以拼成一个周角,所以用正三角形可以进行平面图形的镶嵌.
第二类:选正方形.因为正方形的每一个内角是90°,所以在镶嵌平面时,围绕某一点有4个正方形的内角可以拼成一个周角,所以用正方形也可以进行平面图形的镶嵌.
第三类:选正六边形.(仿照上述方法,写出探究过程及结论)
探究二:从正三角形、正方形和正六边形中任选两种图形,能否进行平面图形的镶嵌?
第四类:选正三角形和正方形
在镶嵌平面时,设围绕某一点有x个正三角形和y个正方形的内角可以拼成个周角.根据题意,可得方程
60x+90y=360
整理,得2x+3y=12.
我们可以找到唯一组适合方程的正整数解为.
镶嵌平面时,在一个顶点周围围绕着3个正三角形和2个正方形的内角可以拼成一个周角,所以用正三角形和正方形可以进行平面镶嵌
第五类:选正三角形和正六边形.(仿照上述方法,写出探究过程及结论)
第六类:选正方形和正六边形,(不写探究过程,只写出结论)
探究三:用正三角形、正方形和正六边形三种图形是否可以镶嵌平面?
第七类:选正三角形、正方形和正六边形三种图形.(不写探究过程,只写结论),
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.
(1)求证:AC⊥BD;
(2)若AB=14,cos∠CAB=,求线段OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,分别是两棵树及其影子的情形
(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形.
(2)请画出图中表示小丽影长的线段.
(3)阳光下小丽影子长为1.20m树的影子长为2.40m,小丽身高1.88m,求树高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(定义新知)在数轴上,点M和点N分别表示数x1和x2 ,可以用绝对值表示点M、N两点间的距离d (M,N),即d (M,N)=|x1-x2|.
(初步应用)
(1)在数轴上,点A、B、C分别表示数-1、2、x, 解答下列问题:
①d (A,B)= ;
②若d(A,C)=2,则x的值为 ;
③若d(A,C)+d(B,C)=d(A,B),且x为整数,则x的取值有 个.
(综合应用)
(2)在数轴上,点D、E、F分别表示数-2、4、6.动点P沿数轴从点D开始运动,到达F点后立刻返回,再回到D点时停止运动.在此过程中,点P的运动速度始终保持每秒2个单位长度.设点P的运动时间为t秒.
①当t= 时,d(D,P)=3;
②在整个运动过程中,请用含t的代数式表示d(E,P).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com