分析 分别画出两个三角形,①AM、DN都在三角形内部,根据直角三角形全等的判定定理(HL)可得出Rt△ACM≌Rt△DFN,从而可得出∠ABC=∠DEF;②AM、DN有一个在三角形的外部,可证明Rt△ACM≌Rt△DFN,可求得∠DFN=∠ACM=60°,然后可求得∠DFE的度数.
解答 解:如图1所示:
∵AM、DN分别为BC、EF边上的高,
∴△ACM和△DFN均为直角三角形.
∵在Rt△ACM和Rt△DFN中$\left\{\begin{array}{l}{AC=DF}\\{AM=DN}\end{array}\right.$,
∴Rt△ACM≌Rt△DFN.
∴∠DFE=∠ACB=60°.
如图2所示:
∵AM、DN分别为BC、EF边上的高,
∴△ACM和△DFN均为直角三角形.
∵在Rt△ACM和Rt△DFN中$\left\{\begin{array}{l}{AC=DF}\\{AM=DN}\end{array}\right.$,
∴Rt△ACM≌Rt△DFN.
∴∠DFN=∠ACB=60°.
∴∠DFE=120°.
故答案为:60°或120°.
点评 本题考查全等三角形的判定及性质,需要掌握三角形的判定定理包括:SAS,AAS,ASA,SSS,HL(直角三角形的判定),注意AAA,SSA不能判定全等,分类画出图形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com