精英家教网 > 初中数学 > 题目详情

【题目】如图①,在长方形中,cm,cm.现将其按下列步骤折叠:(1)将边向边折叠,使边落在边上,得到折痕,如图②;(2)沿折叠,交于点,如图③.则所得梯形的周长等于( )

A. cm B. cm

C. cm D. cm

【答案】C

【解析】

根据折叠的性质得到梯形上底下底以及高的长,再根据勾股定理求出FC的长,然后计算周长即可.

图②中根据折叠的性质可得B′F=AB′=12cm,B′D=AD-AB′=16-12=4cm.图③中,AD=AB′-B′D=8,因为B′F∥DG,所以△ADG∽△ABF,所以所以DG=8.显然△ADG是等腰直角三角形,且△ADG∽△GCF,因此△GCF也是等腰直角三角形.所以FG=.故梯形B′DFG的周长是DG+B′F+B′D+FG=8+12+4+.故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示(1<x=h<2,0<xA<1).下列结论:①2a+b>0;②abc<0; ③若OC=2OA,则2b﹣ac=4; ④3a﹣c<0.其中正确的个数是(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+2ax+c的图象与x轴交于A、B两点(点A在点B的左边)AB=4,与y轴交于点C,OC=OA,点D为抛物线的顶点.
(1)求抛物线的解析式;
(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM,如图1,点P在点Q左边,当矩形PQNM的周长最大时,求m的值,并求出此时的△AEM的面积;
(3)已知H(0,﹣1),点G在抛物线上,连HG,直线HG⊥CF,垂足为F,若BF=BC,求点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:

如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做规形图,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:

(1)观察规形图,试探究∠BDC与∠A、B、C之间的关系,并说明理由;

(2)请你直接利用以上结论,解决以下三个问题:

①如图2,把一块三角尺XYZ放置在ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+ACX=__________°;

②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,DBE=130°,求∠DCE的度数;

③如图4,ABD,ACD10等分线相交于点G1、G2…、G9,若∠BDC=140°,BG1C=77°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。

(1)篮球和排球的单价各是多少元?

(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】菱形ABCD中,∠B=60°,∠MAN=60°,射线AM交直线BC于点E,射线AN交直线CD于点F,连结EF,请解答下列问题:
(1)如图1,求证:EC+FC=AC;

(2)将∠MAN绕点A旋转,如图2,如图3,请直接写出线段EC,FC,AC之间的数量关系,不需要证明;

(3)若S菱形ABCD=18 ,∠CAE=30°,则CF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以长为一边作,取中点,连

求证:

________时,是等边三角形,并说明理由.

时,若,取中点,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,是边的中点,以为腰向外作等腰直角三角形,连接,交于点,交于点,连接.

(1),则 ;

(2)求证: ;

(3),则 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

同步练习册答案