【题目】如图1,在正方形ABCD中,点E为AD上一点,FG⊥CE分别交AB、CD于F、G,垂足为O.
(1)求证:CE=FG;
(2)如图2,连接OB,若AD=3DE,∠OBC=2∠DCE。
求的值;
若AD=3,则OE的长为_________(直接写出结果).
【答案】
【解析】(1)过点B作BM∥FG交CD于M ,构造三角形,证△BCM≌△CDE,可得; CE=BM=FG;(2) 过点B作BM∥FG交CD于M , 连接MO,由(1)证BC=BO,再证MC=MO=MG=ED,又AD=3DE,所以;(3)由(1)(2)可得DE=OM=1,BO=AD=3,
又BM=CE=,再根据面积公式得OC=2×.
(1)过点B作BM∥FG交CD于M ,
易证四边形FBMG为平行四边形
∴FG=BM,
由BC=CD;∠BCM=∠CDE;∠MBC=∠ECD
可证△BCM≌△CDE,
∴CE=BM=FG;
(2)过点B作BM∥FG交CD于M ,
由(1)知△BCM≌△CDE,又∠OBC=2∠DCE ,
MC=ED,∠MBC=∠DCE=∠MBO,
由BM∥FG得MB⊥CE,
∴∠BOC=∠BCO,
∴BC=BO,连接MO,
∴BM垂直平分OC,
∴MC=MO,
又∵∠GOM=∠BMO=∠BMC=∠OGM
∴MC=MO=MG=ED,
又AD=3DE,
∴;
(3)∵AD=3,
∴由(1)(2)可得
DE=OM=1,BO=AD=3,∴BM=CE= ,
OC=2× =2×= ,
∴OE=CE-CO=.
科目:初中数学 来源: 题型:
【题目】万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地。假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等,)又顺水航行返回万州,若该轮船从万州出发后所用时间为x(小时),轮船距万州的距离为y(千米),则下列各图中,能反映y与x之间函数关系的图象大致是【 】
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣2(m+1)x+m(m+2)
(1)求证:无论m为任何实数,该函数图象与x轴两个交点之间的距离为定值.
(2)若该函数图象的对称轴为直线x=2,试求二次函数的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点P的坐标为(a,b),点P的“变换点”P`的坐标定义如下:当时,P`点坐标为(a,-b);当时,P`点坐标为(b,-a)。线段l:上所有点按上述“变换点”组成一个新的图形,若直线与组成的新的图形有两个交点,则k的取值范围是( )
A. B. 或 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1经过过点P(2,2),分别交x轴、y轴于点A(4,0),B。
(1)求直线l1的解析式;
(2)点C为x轴负半轴上一点,过点C的直线l2:交线段AB于点D。
如图1,当点D恰与点P重合时,点Q(t,0)为x轴上一动点,过点Q作QM⊥x轴,分别交直线l1、l2于点M、N。若,MN=2MQ,求t的值;
如图2,若BC=CD,试判断m,n之间的数量关系并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠”; 乙旅行社说:“所有人按全票价的六折优惠”.已知全票价为a元,学生有x人,带队老师有1人.
(1)试用含a和x的式子表示甲、乙旅行社的费用;
(2)若有50名学生参加本次活动,请你为他们选择一家更优惠的旅行社.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第10(n是大于0的整数)个图形需要黑色棋子的个数是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:、两地相距,甲、乙两车分别从、两地同时出发,甲速每小时千米,乙速每小时千米,请按下列要求列方程解题:
若同时出发,相向而行,多少小时相遇?
若同时出发,相向而行,多长时间后两车相距?
若同时出发,同向而行,多长时间后两车相距?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com